
June 2003 Page 1 The Simulation Standard

Connecting TCAD To Tapeout A Journal for CAD/CAE Engineers

INSIDE
“Shortest Path” Option for Flight Line
 Style (Net Bar).. 5
Recent Improvements Expert Layout Editor
 Over-the-Point Drawing of Orthogonal Shapes..... 7
Guardian DRC – Recent Development 9
Guardian LVS: New Platform-Independent GUI 14
Calendar of Events...16
Hints, Tips, and Solutions ...17

HIPEX-Net: Interface From Expert

1. Introduction
HIPEX-Net is a hierarchical layout extractor. It can create
both hierarchical and flat SPICE formatted netlists of the
extracted layout. HIPEX-Net also performs ERC (Electric
Rule Checking) on the extracted netlist. This checks
for connectivity errors in a chip design such as opens,
shorts, and dangling nodes.

HIPEX-Net is a sophisticated script-driven tool. To
invoke the extraction, the user must provide a number
of input script files in LISA: Language for Interfacing
Silvaco Applications. These are option file, layer mapping
files, and technology file. HIPEX-Net technology is
defined by a list of various LISA statements that build
derived layers, connectivity, and devices. However, the
input generation is easy when running HIPEX-Net
from Expert.

Expert automatically creates all the input files needed
by HIPEX-Net. You use the Expert GUI to define
technology and the extractor settings rather than writing
LISA scripts manually. You can also use Dracula technology
converter Expert provides.

HIPEX-Net introduces in Expert hierarchical Node
Probing feature.

2. HIPEX-Net Options Dialog Box
The user controls the extractor run-time settings in the
HIPEX-Net Options dialog box. It is composed of Layout,
Node names, ERC/Pins, Explosion, Ports, Output, and
Netlist Technology Definition pages.

2.1. Layout Settings

Here you choose which cell is to be extracted. You can
specify any cell in the layout hierarchy as a top level.
The Flatten Layout option makes HIPEX-Net flatten the
layout before extracting the netlist. This allows you to
process safely layouts with hierarchy violations (devices
built partly in one cell and partly in another) at the cost
of performance. The Rebuild Derived Layers checkbox

Continued on page 2 ...

Volume 13, Number 6, June 2003

should be checked if there have been any changes in the
layers related to device/connectivity definition. The
Annotate Layout checkbox makes the Node Probing
feature available after HIPEX-Net completes the netlist

Figure 1. Layout page of the Options dialog.

 The Simulation Standard Page 2 June 2003 June 2003 Page 3 The Simulation Standard

extraction. Checking this box can decrease HIPEX-Net
performance, but the benefit is that you can search by
name or point by mouse nets, devices, and instances to
highlight and traverse them directly in the layout editor
window.

The two Check for ”...” options check the layout for multiple
identical placements of instances and for non-45 angle
geometry. The Resolution Factor text box defines the
minimum distance that separates two distinct points of
the layout.

Using the Write Device Labels into Layout group of
options, you set up text labels that HIPEX-Net can add
to devices found in the layout. The text is the SPICE
statement of the device.

The Text Data Types group box contains the two text
fields, Global and Port, for setting the global and port
text datatypes. HIPEX-Net considers text with any other
datatype as local text. Local text are labels for a node in a cell,
while global text are labels for nodes for the entire layout (e.g.,
VSS and VDD). Port text are intended to label ports only.

2.2. Node Names Settings

HIPEX-Net extracts text from the layout and uses it to: (1)
assign names to nodes in the output netlist and (2) check
for opens and shorts in the layout. HIPEX-Net follows a set
of rules when processing layout text for node names. For
example, global text always takes precedence over local
text. You can fine tune node naming in the Node Names
page of the Options dialog (see Figure 2).

Here you define the separator and prefix characters
HIPEX-Net uses in node names. If HIPEX-Net cannot
find text anywhere in the hierarchy for a node, it creates
a name for the node automatically based on the serial
number. You can make HIPEX-Net add the X, Y layout
local coordinates to autogenerated names by checking
the appropriate box.

The two text boxes, Power Node Synonyms and Ground
Node Synonyms, allow you to define the synonym names
to the power and ground node. HIPEX-Net substitutes all
the listed names by the first one. The Global Node Names
text box lists labels you want to make global in spite of
their actual datatype in the layout.

The Virtual Nets group box provides options to make
HIPEX-Net consider separated virtual (unfinished) nets
as the same net.

2.3. ERC/Pins Settings

HIPEX-Net uses extracted text from the layout to check con-
tinuity and reports possible shorts and opens. If HIPEX-Net
finds open or shorted nodes, it flags them by writing error
messages to the summary file. HIPEX-Net can also report
dangle nodes that are not attached to any devices.

You control various ERC options in the ERC/Pins page of
the Options dialog shown in Figure 3.

Here you choose whether HIPEX-Net reports in the
summary file all the dangles it encounters. Using the

Figure 2. Node Names Options Page.

Figure 3. ERC/Pins Options Page.

 The Simulation Standard Page 2 June 2003 June 2003 Page 3 The Simulation Standard

Output Dangles checkbox, you can dump flat layout of
the dangle nodes into the separate GDSII file. The two
Warning for “...” checkboxes make HIPEX-Net write
in the summary file the warning messages about
improperly connected MOSFETs and BJTs. The Rename
Opens drop-down list determines whether HIPEX-Net
assigns different names to the nodes having the same local
(in a given cell) or global (in the entire layout) text label.

The Pins options determine whether HIPEX-Net ignores
dangle pins of subcircuits and renames open global pins.

2.4. Explosion Settings

In the Explosion page of the Options dialog, you can
define various operations on design hierarchy, such as
cell explosions and ignoring particular cells during the
extraction. Figure 4 shows the Explosion page.

Here you can explode all the instances of cells containing
only wiring, raising their content up one level before the
cell is processed. The other checkbox forces HIPEX-Net-
to ignore all text at lower levels of the hierarchy except
the top one.

The table in the bottom of the Explosion page allows you
to define operations on individual cells. The allowable
operations are: EXPLODE, FLATTEN, SMASH, and IG-
NORE. The AUTO option means do nothing.

2.5. Ports Settings

One of the benefits using HIPEX-Net is that it doesn’t
force you to declare the cell pins or assign names to cell
pins. HIPEX-Net creates pins automatically when it finds
any hierarchical connection (that is, between cells from

Figure 4. Explosion Options Page. Figure 5. Ports Options Page.

Figure 6. Output Options Page.

 The Simulation Standard Page 4 June 2003 June 2003 Page 5 The Simulation Standard

different hierarchy levels). Nevertheless, HIPEX-Net
allows you to predefine names and locations of cell
pins. These predefined pins are called ports. There are a
couple of advantages using ports. One advantage is you
can define pins for the top cell in the layout. The other
advantage is you can verify hierarchical connections (i.e.,
pins) by ports. If you do so, HIPEX-Net creates pins only
in those locations where both pin and port are present.

You define ports in the Ports page of the Options dialog
box (see Figure 5).

Use a special port layer in your layout (you can also use
several port layers if needed). Give your ports names
using port datatype text. Then, set this layer as port
layer using the Add Layers button. Once you define
port layer(s), you can link/unlink conductor layers to
the selected port layer. Then, the port-linked conductor
layers can be verified for hierarchical connections that
go through them. You can force HIPEX-NET to create
subcircuit pins in the port locations, even if there are no
actual hierarchical connections, by checking the Create
Ports box.

2.6. Output Settings

In the Output page of the Options dialog, you define
filenames of the output SPICE netlists and control SPICE
device parameters to be written to those netlists. Figure
6 shows the Output page.

The two Write “...” allow you to output additional SPICE
parameters for MOSFETs and capacitors.

3. Netlist Technology Definition

The Netlist Technology Definition page of the Options
dialog allows you to define technology information
needed by HIPEX-Net. Expert saves the user technology
definitions in the project file (.eld file). Then, the layout
editor converts the technology data to the HIPEX-Net
technology file once you run the extractor.

HIPEX-Net deals with three types of technology information
(see Figure 7): Layer Derivation Statements (Derived
Layers), Connectivity Statements (Connectivity), and
Device Definitions (Devices). You can modify these
types of technology parameters separately.

For technology definition, you can use GUI controls and
dialogs accessible from the page above. The alternative
way is to load technology data from external Expert
technology files (.tcn files). You can create .tcn files in any
text editor manually or use the Setup>>Technology>>
Import Technology”...” menu command to convert
Dracula rule files.Figure 7. Netlist Technology Definition Page.

 The Simulation Standard Page 4 June 2003 June 2003 Page 5 The Simulation Standard

“Shortest Path” Option for Flight Line Style (Net Bar)

Introduction
There is the recent improvement in Expert Layout Editor,
the “Shortest path” option was added to Flight line styles
(Net Bar). This option allows to build the shortest tree
(network) connecting all selected nodes.

 “Tree” means the network of vertices (nodes) connected
with undirected edges (lines) which has two basic properties:

1. Any two vertices are connected with some path.

2. There are no unnecessary edges, in other words if any
edge is removed then the first property will be violated.

“Shortest tree” means the tree with minimal summarized
length of edges. It is also called the Minimum Spanning
Tree (MST). Minimum Spanning Tree of the given set of
points P on Euclidean plane is called Euclidean Minimum
Spanning Tree (EMST).

Algorithm
There are a lot of algorithms for finding the Minimum
Spanning Tree (one of them is well-known Prim’s al-
gorithm, which is described below), but their common
problem is bad productivity.

Most of these algorithms require at least O(n2) time
(where n is number of vertices), because the first step
for these algorithms is building of the complete graph
with all possible edges, where each vertex is directly
connected with any other vertex. This operation takes
O(n2) time.

Such slow algorithms can be used with small number of
vertices but are absolutely inefficient with huge number
of vertices. For example, processing of 10,000 vertices
will be about 1,000,000 times longer than processing of
10 vertices.

To avoid this problem the set P of points on Euclidean
plane is processed in two steps.

The first step is finding the Delaunay triangulation (Figure 3)
for n points on Euclidean plane using the “divide and
conquer” algorithm (presented in [1]).

During second step we run the Prim’s algorithm on the
Delaunay triangulation (Figure 4) to find the Minimum
Spanning Tree.

The total processing time is O(n⋅log(n)), so processing time
grows almost linearly with number of processed points.

Figure 1. Layout Expert Editor screenshot.

 The Simulation Standard Page 6 June 2003 June 2003 Page 7 The Simulation Standard

The results of described two-steps algorithm is EMST
because of well-known theorem

EMST of given set of points P on plane is a subgraph of
Delaunay triangulation of P.

Delaunay Triangulation and
“Divide and Conquer” Algorithm
The Delaunay triangulation is a triangulation in which
every circumcircle of a triangle is an empty circle. Figure 3
shows the example of Delaunay triangulation.

• The common idea of the “divide and conquer” algorithm
is to process the set of vertices recursively.

• The original set of vertices V = {v1, …, vn}, vi = (xi, yi)
is sorted by x and y coordinates so that vi < vi+1, that
means xi ≤ xi+1, and if xi = xi+1 then yi < yi+1.

• The total set of vertices V is divided into two parts
V1 = {v1, …, vk} and V2 = {vk+1, …, vn}, V1∪V2 = V according
to sort order (left part and right part).

• Then “divide and conquer” algorithm is recursively
applied to both parts (independently).

• The resulting Delaunay triangulations of two parts
are joined (zipped) into one Delaunay triangulation.

Prim’s Algorithm
Prim’s algorithm processes graph G = (V, E) of n vertices
V = {v1, …, vn} and m undirected edges E = {e1, …, em}
and removes unnecessary edges.

• First step is to choose an arbitrary vertex v1 ∈ V and to
build the set of processed vertices P = {v1}, consisting
only of v1.

• Then on every step one new vertex vi is added to the
set of processed vertices P. To choose this vertex we
look for smallest edge e = (vj, vk) connecting the pro-
cessed vertices with unprocessed, vj ∈ P, vk ∈ V\P.

• Process is repeated until there are no unprocessed
vertices more.

Figure 4 shows the results of Prim’s algorithm.

References
[1] Guibas, L. and Stolfi, J., “Primitives for the Manipulation of Gen-

eral Subdivisions and the Computation of Voronoi Diagrams”, ACM
Transactions on Graphics, Vol.4, No.2, April 1985, pages 74-123.

[2] Okabe, A.; Boots, B.; and Sugihara, K. Spatial Tessellations:
Concepts and Applications of Voronoi Diagrams. New York: Wiley,
1992.

[3] Lee, D. T. and Schachter, B. J. “Two Algorithms for Constructing a
Delaunay Triangulation.” Int. J. Computer Information Sci. 9, 219-
242, 1980.

Figure 2. There are no edges. Figure 3. Step 1 – creating the Delaunay triangulation using
“divide and conquer” algorithm

Figure 4. Step 2 – finding the Minimum Spanning Tree using
Prim’s algorithm

 The Simulation Standard Page 6 June 2003 June 2003 Page 7 The Simulation Standard

This article presents an overview of new features added
to Silvaco’s Expert layout editor. Silvaco has taken a
careful look at the real-world obstacles faced daily by
semiconductor layout designers and design engineers.
Silvaco has augmented Expert with features that
dramatically increase flexibility and also help to reduce
constraint violations and other roadblocks inherent to
complex layout design.

Expert is a fast, robust, PC-based editor that is designed
to manage the complex issues inherent to advanced,
deep-submicron Ultra Large Signal Integration (ULSI)
designs. Expert’s proprietary database efficiently
processes (ULSI) without restrictions on layout complexity
or type of geometry. These improvements once again
secure Expert’s place as an industry standard without
sacrificing the stability and ease-of-use that seasoned
layout experts have come to expect and rely on.

New Features, Better Results

Expert’s new features help users avoid the geometrical
constraint violations that result from non-orthogonal
cursor movements during the creation of polygon and
90-degree Angle Mode wires. Expert now defines
authorized cursor movements with specific axis points.
The software automatically adds extra vertices in order
to keep shapes consistent within the allotted space.
Seasoned users of Expert have more flexibility than in
previous versions that automatically restrained the cursor to
orthogonal movements while in Direction Snap Mode.

The orthogonal-movements-only option is still available
in the Edit > Direction Snap Mode > Orthogonal menu.
In this mode, each defined vertex requires a single
mouse click.

New menus simplify and augment project setup. Angle
Mode easily sets default geometrical constraints for 90- and
45-degree custom layouts. Direction Snap Mode restricts
potentially dangerous cursor movement to user-defined
behavior patterns during object creation and modification.
These features are accessed from either Edit > Angle
Mode or Edit > Direction Snap Mode menus, by clicking
the corresponding Drawing Bar, or by pressing an
assigned hotkey.

Over-the-Point Mode simplifies the shape definition
process and then quickly renders orthogonal polygons
and wires. When this mode is active, a user-specified
definition is needed for every second vertex (1st, 3rd,
5th, etc). Two consecutive orthogonal polygons or wires
are created with a single mouse click in projects where
Angle Mode is set to 90 degrees and Direction Snap
Mode is set to “None” (no cursor movement) or to
“Diagonal” (diagonal and orthogonal movements only).

The Vertical First option simplifies the drawing of
complex shapes with Over-the-Point input. If the Edit
> Region Mode > Vertical First option is checked, the
first segment is created vertically and the second one,
horizontally. If the option is not checked, the reverse is
true. The Vertical First shortcut enables or disables this
feature during object drawing.

 Expert Layout Editor Recent Improvements –
Over-the-Point Drawing of Orthogonal Shapes

Figure 1. Orthogonal cursor movements only.

 The Simulation Standard Page 8 June 2003 June 2003 Page 9 The Simulation Standard

Search and Properties Dialogs
No Longer Block Editing
The Edit >Search and Edit >Properties dialog boxes are
reimplemented as non-modal, i.e., Expert window is
available for editing, while search results are available
for traversing. This allows to make search only once to per-
form any legal operation with each found layout object.

Show Critical Zone Option in DRC Guard
DRC Guard checks geometrical design rules during
construction, in other words “on the fly”. Rules for
checking are specified by an ordinary DRC script. The
violations are not saved in the DRC error database, but
are reported by blinking markers on the screen. If the

Figure 3. Arrows at both sides of the object show critical zone
for width error.

Figure 2. No restriction on cursor movements.

cursor is placed at a blinking error marker, a short
description of the error appears as a small pop-up label.
To fix indicated DRC rules violation, objects with violating
segments should be modified or moved to make blinking
marker disappear.

Expert DRC Guard’s Show Critical Zone option displays
or hides critical zone indicators in the design layout. The
critical zone clearly highlights the minimal shifts of
violating segments that are critical when troubleshooting
potentially detrimental DRC violations. The option is
available only when the Show Error Flags menu option
is enabled.

Conclusion
This paper provides a brief sketch of some of the new
features in Silvaco’s Expert layout editor. These features
simplify the layout design process and enhance the
flexibility that Expert’s satisfied users are familiar.
Additional information about these and other features
is found in the Expert product documentation or from
Silvaco International.

 The Simulation Standard Page 8 June 2003 June 2003 Page 9 The Simulation Standard

Edge-Based Operations
Recent versions of Guardian DRC introduce operations
that involve edge layers, either on input or on output.

An edge layer is a layer that contains line segments that
are edges or parts of edges of shapes from other layers.
These edges have “inner” and “outer” surfaces defined
according to the shape layers they were derived from.

Edge Selection by Topological Relations
select_edges: relation={inside | outside}

 [, options=(not)],

 layer1=LayerA,Layer2=LayerB,
 LayerR=EL1;

These commands (without “Not” option) select edges
or parts of edges from Layer1 that lay strictly inside (re-
spectively, outside) of shapes from Layer2.

“Not” option is for inverting the selection.

select_edges: relation = {coincide | touch}

 [, options=(not[,{inside | outside}])],

 layer1=LayerA, Layer2=LayerB,LayerR=EL1;

“Coincide” relation selects parts of edges from Layer1
that coincide with (parts of) edges from Layer2.

“Touch” relation selects complete edges whose parts co-
incide with (parts of) edges from Layer2.

“Inside” option means that at points of coincidence the
insides of edges overlap.

“Outside” option means that at points of coincidence the
insides of edges do not overlap.

“Not” option is for inverting the selection.

Shape Selection by Edges
select: relation=touch,

 [, options=(options_list)],

 layer1=LayerA, Layer2=LayerB,
LayerR=EL1;

Layer2 is allowed to be edge layer. In this case, the opera-
tion selects shapes from Layer1 whose edges touch edges
from layer2. In this case “Touching” can be both inside
and outside touching. (When both layers are shape lay-
ers, touching is considered only from the outside.)

Edge Layers on Input of Old DRC Operations

- All distance check operations accept edge layers on input
- Substrate (new syntax allows input layers)
- Copy (if input is edge layer, then LayerR is edge layer)
- Delete
- Select...Touch may have Layer2 to be edge layer.

Size_Edge Operation
Size_edge: layer = <L1>,

[{In | In_Factor} = <NIn>,] [{Out | Out_
Factor} = <NOut>,]

[{Extend | Extend_factor} =<NExt>,]

layerr = <L2>;

“*_Factor” parameters mean that the numeric parameter
is the factor by which the edge length must be multiplied
to obtain the actual sizing parameter.

“In” parameter specifies the amount of expanding the
edge in the “inside” direction. This parameter must be
nonnegative.

“Out” parameter specifies the amount of expanding the
edge in the “outside” direction. This parameter must be
nonnegative.

“Extend” parameter specifies the amount of elongating
the edge from both sides. This parameter may be nega-
tive, meaning edge contraction.

An edge produces no output, if its length does not exceed
twice the negated extension value (e.g., in the case “Ex-
tend_factor = -0.5”).

NOTE: If all in/in_factor/out/out_factor parameters are zero,
the output is an edge layer, otherwise it is a shape layer.

Edge Selection by Slope

The following command selects edges with slopes with-
in specified limits.

The limits are specified in degrees, with values between
0 and 90.

Slope: Layer=<name>, LayerR=<name>, Limits
<range>;

The output is an edge layer. The input layer may be shape
or edge layer.

Example:

Slope: layer= M1, layerR=M1Acute, limits >0 <=45;

Edge Selection by Adjacent Corners

Select_Edges: Relation=Corners,

[convex=<012-limits>,] [length <limits>,]

[angle1 <0.0-360.0>,][Length1 <limits>,]

[angle2 <0.0-360.0>,][Length2 <limits>,]

layer=<shape-layer>, layerR=<edge-layer>;

This command selects edges basing on the parameters of
the adjacent corners: angles and side lengths.

Guardian DRC – Recent Development

 The Simulation Standard Page 10 June 2003 June 2003 Page 11 The Simulation Standard

convex specifies limits for the number of convex angles
adjacent to the edge;

length specifies limits for the length of the segment
itself

angle1,2 specify limits for the first/second adjacent
angle, in range between 0 and 360 degrees.

length1, 2 specify limits for length of the first/second
adjacent side.

Examples:

Select_Edges: Relation=Corners, convex <2, length >10,
layer=m1, layerr = outbendM1;

Select_Edges: Relation=Corners, convex <2, angle1 = 90,
angle2 == 90, length <0.3, layer=m1, layerr = m1Loop;

News for Antenna Checks

Notion of Layer of Origin

If LayerB is produced from LayerA by the following
operations:

- Select operations with merged selection layer
- Select_edge operations
- Check operations with different LayerR1 and LayerR2

values
- Check_Node_Params
- Copy
then LayerA is called layer of origin for layerB.

Antenna Checks with Accumulation

‘LayerA’ keyword is introduced for Check_Node_
Params command:

Check_Node_Params: Formula = (expression),

Value=<value1[:value2]>, Type=<check type>,

Layer = <layer identifier>, LayerR = <output layer identifier>,

LayerA = <accumulative layer identifier>;

LayerA must be the output layer of a previously executed
Check_Node_Params operation. LayerA and Layer must
have the same layer of origin.

If LayerA is not specified, then Check_Node_Params
command attaches to each output polygon the corre-
sponding value of computed Formula.

If LayerA is specified, then for each polygon from Layer
(which belongs to an electrical node present in input
parameter files) the following is done:

• If the polygon is not present in LayerA, then the
calculated value of Formula itself is checked against
the constraints.

• If the polygon is also present in LayerA, then the
calculated value of Formula for its node is increased
by the value attached (by the preceding Check_Node_
Params operation) to the polygon in LayerA, and the
result is checked against the specified constraints.

If the checked accumulated value meets the constraints,
then the polygon is output to LayerR with the accumulated
value attached.

Note: If LayerR is written into Expert layout database,
the attached values are represented as used-defined
properties with name specified in “Update_layout”
command, parameter “Antenna”.

Antenna Log Files
The ‘LogR’ and ‘LogA’ keywords are introduced for
Check_Node_Params command:

Check_Node_Params: Formula = (expression),

Value=<value1[:value2]>, Type=<check type>,

Layer = <layer identifier>, LayerR = <output layer identi-
fier>

[, LayerA = <accumulative layer identifier>]

[, LogR = <output geometry log-file name>],

[, LogA = <antenna violation log-file name>];

‘LogR’ keyword allows to generate a log-file containing the
following information for each polygon in the output layer:

1) lower left vertex of the polygon (coordinates are in
internal database units)

2) (accumulated) antenna value corresponding to the
polygon (the value are in script measurement units).

The log-file also contains information about the operation
performed, the internal database unit and the script
measurement unit.

If file with specified name exists, the operation rewrites it.

‘LogA’ keyword allows to generate a log-file containing
the following information for each electrical node failed
the antenna check:

1) node number

2) computed formula value corresponding to the node
(the values are in script measurement units).

The accumulation of antenna values (provided by ‘LayerA’)
are not reflected in this log-file.

The log-file also contains information about the operation
performed and the script measurement unit.

If file with specified name exists, the operation appends it.

 The Simulation Standard Page 10 June 2003 June 2003 Page 11 The Simulation Standard

‘Shapes’ Parameter

A new geometric parameter name, ‘Shapes’, can be used in
Get_Node_Params and Check_Node_Params commands.
It denotes the number of polygons that belong to a node.
For this node parameter, all actions (Min, Max, Sum) are
equivalent, so you can always use this parameter without
specifying the action.

 “Not” Operation

Unary ! (Not) mathematical operation can be used in
Formula in Check_Node_Params command. The result
of the operation is zero if its argument is non-zero and 1
if its argument is zero.

Preprocessor Directives
In addition to #ifdef and #ifndef, a new directive, #if is
added.

Syntax:
#if <Boolean_expression>

//...

[#else]

//...

#endif

Boolean_expression can consist of preprocessor vari-
ables and constants, parentheses, Boolean operations
(NOT, AND, OR, XOR, EQV (case insensitive)), and com-
parisons of expressions (==, != <=, >=, <,>).

Constant’s Boolean value is “true” if it is nonzero and
“false” otherwise.

Preprocessor variable’s Boolean value is defined as be-
fore.

Recall that a preprocessor directive must be written in a
single line.

Example:
#define A
#define B 1
#undef B

// at this point a=true, b=c=d=false
#if (A or B or C or D)
//...
#else
//...
#define C 12
// now C is true
#if (((C >= 1) and NOT A) or D)
//...
#endif
//...
#endif
//...

Input/Output of Layout Data

Input Merging

Merge_Input: {on | off};

If this setting is on, then all input layers are merged when
layout data is read from them into the DRC system.

The default setting is off, according to the old behavior
of the DRC engine.

Input Snapping to Grid

Snap_Input: {on | off};

If this setting is on, then all input layers are snapped
onto the corresponding grids when layout data is read
from them into the DRC system. If Merge_Input is on,
input snapping is performed before input merging.

Grid setting is specified by Grid_Resolution directive.

The default grid setting is 1 Database unit.

The default setting is off, according to the old behavior
of the DRC engine.

Returning Layers from DRC to Expert Layout Data-
base

The following setup command controls writing layers
from DRC layout data into ELD files.

Update_Layout:

 [input=yes|no]

 [, new=yes|no]

 [, ampersand=”string”]

 [, technology=Yes|No|Combine]

 [, nonempty= Yes|No|Combine]

 [, layers=(<list>)]

 [, no_layers=(<list>)]

 [, combine_layers=(<list>)]

 [, warning=Yes|No|Error];

 [, Antenna_Attr_Name = <text>]

 [, Node_Attr_Name = <text>…;]

 [, output_cell= “name”]

No : do not write into ELD file.

Yes : overwrite existing data.

Merge: merge with existing data.

 Input: Layers from “Layers” list

 New: New (non-temporary) layers

 The Simulation Standard Page 12 June 2003 June 2003 Page 13 The Simulation Standard

 Ampersand=”string”: Write back temporary layers by
name, with ‘&’ replaced by “string” (1st ‘&’ is forbiddedn
in Expert)

 Technology: Non-scratch layers from ELD technology
(by name)

 Nonempty: Any nonempty ELD layers

 Layers=(list): list of layers allowed to be written back

 (overrides settings of switches)

 Merge_Layers=(list): list of layers allowed to be merged
by writing back

 (overrides settings of switches)

 No_Layers=(list): list of layers forbidden to be written
back

 (overrides settings of switches)

Warning=Yes|No|Error : if a DRC command outputs a
layer that confilicts with the settings of the command,
then write/nowrite warning into log or stop execution.

Default setting (chosen to match the old behavior of DRC):

If this command is not specified then input=no, all
remaining switches =yes

If several switches apply to a layer (e.g. a layer is input
and nonempty), then option “NO” takes precedence (for
data safety).

Conflicts between “...Layers” lists are treated as error.

Passing Connectivity and Antenna Information into
ELD Format

If a layer has node info and/or antenna info, then the
corresponding shapes written into eld file will have
user-defined attributes with the names specified in the
Update_layout command and the corresponding values.

Antenna_Attr_Name specifies the name of a user-
defined attribute attached to a shape when it is returned
from DRC to Expert. The value of this attribute is the
value calculated by Check_Node_Params operation.

Node_Attr_Name specifies the name of a used-defined
attribute attached to a shape when it is returned from
DRC to Expert. The value of this attribute is the node
name for the shape.

Cell for DRC-Generated Layers

output_cell= “name”

This parameter specifies the name of the cell to write the
DRC-generated layers instead of the cell for which DRC
was run.

If there is no such cell in the layout, it will be created.

Numeric Parameters of DRC Commands
This version allows you to write flexible checks using
arithmetic expressions to specify check constraints, as
shown in the example below.

variable: Gap = 0.3;

size: layer= AVDF, value = Gap/100, layerr= AVs;

merge: layer = AVs, layerr = AVm;

Outdistance: layer = Avm, limits >=Gap/100 < Gap*1.5,
ID= “AVD3.1”;

Check and Selector Limits

A simpler syntax for check constraints is introduced to
replace the likes of “type=LT, value=0.3”.

Limits <limit>,

Limits <range>

where <limit> is one of :

!= ‘value’

== ‘value’

 = ‘value’ (the same as ==<value>)

 > ‘value’

 < ‘value’

>= ‘value’

<= ‘value’

‘value’ cannot have measurement unit suffix. You must
use “unit” statement, if necessary.

<range> is <limit1> <limit2>, where one of limits is the
lower limit of the range and another one is the upper
limit. The lower one must not exceed the upper one.

Examples

(1) width: layer=m1, limits !=1;

(2) width: layer=m1, limits <=2>=1;

(3) width: layer=m1, limits >1 <=1.5; // run time error:
the upper limit less than the lower one

(4) width: layer=m1, limits >=1 <=1; // equivalent to (1)

(5) width: layer=m1, limits >1<1; // run time error: bad
range

A similar usage is possible for count limits in select op-
erations.

Examples

Select: relation= overlap, options=(shapes !=2),...;

Select: relation= overlap, options=(nodes >1 <=4),...;

 The Simulation Standard Page 12 June 2003 June 2003 Page 13 The Simulation Standard

Variables

Variables are components of arithmetic expressions.

variable: <name> = <value>;

<name> is the name of the variable. It is case-insensitive.

<value> is an arithmetic expression built from numbers
and previously defined variables.

Examples

VARIABLE: MinW = 0.2;

VARIABLE: MinS =0.301;

VARIABLE: Unders=MinW/2 - 0.001;

VARIABLE: Step = 2*Unders + MinS;

Arithmetic Expressions

Arithmetic expressions are constructed from numbers
and variables, parentheses, arithmetic operators (+,-,*,/)
and functions:

MIN(expr, expr), MAX(expr, expr) minimum and maxi-
mum of the two expressions

INT(expr) integer part of the numer

SQRT(expr), square root

POWER(expr1, expr2) expr1 raised into expr2 power.

Arithmetic expressions may be used in the following
places:

- Variable definitions

- With “Limits” keyword in checks

- With “Value” keyword in sizing operations

- With “shapes” and “Nodes” keywords in select options.

Substrate Command: New Options and
Parameters

substrate: [layer = <LName>,]

 [T=<Ymax>,][B=<Ymin>,][L=<Xmin>,][R=<Xmax>,]
layerr= <RLName>;

substrate: [layers = (Lnam1, ..., LnamN),]

 [T=<Ymax>,][B=<Ymin>,][L=<Xmin>,][R=<Xmax>,]
layerr= <RLName>;

substrate: [options=([Nosize][,][Input]),]

 [T=<Ymax>,][B=<Ymin>,][L=<Xmin>,][R=<Xmax>,]
layerr= <RLName>;

T, B, L, R parameters specify the top, bottom, left and
right clipping coordinates for the produced box. In par-
ticular, the commands

variable: BoxSize = 0.1;

substrate: b=1, t=1+BoxSize, l=3, r= 3+BoxSize,
layerr=Box13;

build ‘Box13’ layer with the specified box, if it is inside
the “normal” substrate.

“Input” option means that the substrate is based only
on the layers actually taking part in DRC operations
(regardless technology file or layer table).

Note:

Compatibility with Batch Calibre:

substrate: options=(input, nosize),...

Compatibility with Interactive Calibre:

substrate: options=(nosize),...

substrate: [layer = <LName>,] layerr= <RLName>;

substrate: [layers = (Lnam1, …, LnamN),] layerr= <RLName>;

substrate: [options=(Nosize),] layerr= <RLName>;

If Layer or Layers parameters are present, then the command
builds the bounding box for the listed layers only.

If “Nosize” option is absent, this box is resized by 1um
from the minimal bounding box. “Nosize” option cancels
this resizing.

NOTE: In the first two forms of syntax there is no resizing.

 The Simulation Standard Page 14 June 2003 June 2003 Page 15 The Simulation Standard

Introduction
We introduce platform-independent version of Guardian
LVS. At present, very important feature of any tool is its
capability to operate on various platforms and to support
the internationalization. Now Guardian LVS is a mul-
tiplatform application operating on the following plat-
forms: Windows, Linux, Solaris (32- and 64-bit versions),
HP-UX. Guardian User Interface is realized on the base
of Trolltech’s Qt that is a C++ toolkit used by numerous
companies and organizations for development of multi-
platform GUI and applications.

Guardian User Interface Using Qt
Guardian LVS is equipped with Silvaco Text Editor
which is also based on Trolltech’s Qt toolkit. This Text
Editor has advanced memory management that allows
you to operate with files up to 2Gb. The system optimally
uses RAM by “dynamic loading-unloading” the contents
of file. The Text Editor has all the basic features, such as:

• File features for creating, opening, and saving text files.

• Printing features with possibilities of choosing
printer, specification of size, source, orientation of the
paper, choosing color or grayscale mode for printing,
setup of page margins, print preview.

• Editing features with multi-level undo and redo; cut,
copy, paste, delete and select all support.

• Search features that allows to find, find next, find
previous, replace a given text string, quickly go to a

given line number, to set the bookmarks and travel
from a bookmark to another one in the forward and
backward directions.

Moreover, Guardian User Interface has the features for
management of LVS verification process:

• Project file features for loading and saving LVS
project files.

• Action features for performing LVS verification,
flattening hierarchical netlists, viewing hierarchical
structure of netlist, loading “LVS Navigator” tool
after the verification is done.

• Window management features for arrangement of
netlists and reports. Guardian LVS allows you to
view simultaneously all LVS reports as well as to link
these reports with the schematic and layout netlists
for easy inspection of LVS results.

• Setup features for setting options of LVS verification,
some options of user interface, font setup.

• Guardian LVS on-line help system that uses Qt text
browser for hypertext navigation.

Guardian LVS also performs the spice syntax highlighting
for schematic and layout netlists. It can recognize names
of devices and subcircuit instances, spice commands,
parameter keywords, and comments (see Figure 1).

Frequently used commands are assigned to buttons of four
toolbars: main, action, window and edit. You can move
these toolbars and show or hide any one from them.

Guardian LVS: New Platform-Independent GUI

Figure 1. Spice syntax highlighting in platform-independent Guardian LVS.

 The Simulation Standard Page 14 June 2003 June 2003 Page 15 The Simulation Standard

Inspection tools in platform-independent
Guardian LVS
After a LVS run has been performed, Guardian LVS
creates the reports that are used for inspection of LVS re-
sults. Platform-independent Guardian LVS is equipped
with a set of tools that link the report files with the
schematic and layout netlists and make the inspection of
results maximum easy. Guardian LVS has the following
inspection tools:

• Netlist Hierarchy tool activates the Netlist Rover that
contains the full information about netlist hierarchy
represented in the form of the tree (see Figure 2). You
can see in the tree all instances belonging to a subcir-
cuit as well as the names of subcircuits corresponding
to these instances. You can highlight the instance or
subcircuit in netlist by double click on its name in the
tree of Netlist Rover.

• Connectivity Traversing tool shows all nodes to
which selected node is connected. Double click on
any of the neighboring nodes opens the same panel
with connections for new node.

• Netlist File Highlighting tool allows you to find a
node in netlist after double click on its name in a re-
port. The corresponding spice file will be open and all
appearances of this node name will be highlighted at
the top level or in a subcircuit (see Figure 1).

• LVS Navigator tool searches and inspects matched
and unmatched nodes, discrepancies and parameter
errors. These nodes will be highlighted in reports and
both netlists (see Figure 2).

• Node Walker tool shows you the neighborhood list of
a node and match or unmatch information for these
neighborhoods in the Node Walker panel. Double

click on a node name in this panel activates neighbor-
hood list of this node (see Figure 2).

• Merge Hierarchy tool displays the information about
merge and reduction for a selected hierarchical name
in the merge, match, unmatch, parameter error, and
parameter match reports (see Figure 2).

• Instance-Subcircuit Info tool shows the hierarchy of
a selected node name in filter, match, unmatch, parameter
error or parameter match reports. You can highlight
in netlist any instance and the corresponding subcircuit
which contains a selected node by double click in
Instance-Subcircuit panel.

Guardian LVS can process huge netlists containing millions
of devices. These netlists have the nets connecting to
hundreds of thousands neighbors. Some from above-
listed tools, for example Connectivity Traversing, Node
Walker, must contain and represent the information
about all connections of these nets. Moreover, the tree
in Netlist Rover panel must keep all names of instances,
subcircuits of these instances, and devices of the netlists.
It’s necessary to note that the representation of infor-
mation in dialog panels in Guardian LVS on the base
Trolltech’s Qt takes much less time than Guardian LVS
on the base MFC. For example, representation of the tree of
Netlist Rover for netlist with 120000 devices in Guardian
LVS with Qt is performed about 50 times faster than in
Guardian LVS with MFC.

Conclusion
At present Guardian LVS is a platform-independent ap-
plication. It operates on Windows, Linux, Solaris, HP-UX
and can be built for many other Unix-variant platforms.

Figure 2. Inspection tools in Guardian LVS (Linux example).

 The Simulation Standard Page 16 June 2003 June 2003 Page 17 The Simulation Standard

1
2
3
4
5
6
7
8
9
10
11
12 IPRM - Santa Barbara,CA
13 IPRM - Santa Barbara,CA
14 IPRM - Santa Barbara,CA
15 IPRM - Santa Barbara,CA
16 IPRM - Santa Barbara,CA
17
18
19 GaAs MANTECH -
 Scottsdale, AZ
20 GaAs MANTECH -
 Scottsdale, AZ
21 GaAs MANTECH -
 Scottsdale, AZ
22 GaAs MANTECH -
 Scottsdale, AZ
23
24
25
26
27
28
29
30
31

Calendar of Events

June
1
2
3
4
5
6
7
8
9 AM-LCD - Kogakuin Unv, Tokyo
10 AM-LCD - Kogakuin Unv, Tokyo
11 AM-LCD - Kogakuin Unv, Tokyo
12
13
14
15
16 IMFED - Osaka, Japan
17 IMFED - Osaka, Japan
18 IMFED - Osaka, Japan
19
20
21 NSREC - Monterey, CA
22 NSREC - Monterey, CA
23 NSREC - Monterey, CA
24 NSREC - Monterey, CA
25 NSREC - Monterey, CA
26
27
28
30

July Bulletin Board

If you would like more information or to register for one of our our workshops, please check our web site at http://www.silvaco.com

Impact of Silvaco
SmartSpice-64 to SoC

Design Problems

SmartSpice-64™ Circuit Simulator
gives true SPICE accuracy for
simulating large circuits beyond
the capability of 32 bit SPICE. One
major application of this technology
is the SPICE simulation of an SoC
clock tree with full parasitics to
validate signal integrity of the clock
signal. Another major application
is to simulate complete megabit
memories for sense amp margins
with full parasistics or to measure
static, dynamic, and leakage power—
especially at 130 nanometers and
below. These two applications share
the common simulation requirements
for uncompromised accuracy, large
capacity, and simulation results in a
reasonable timeframe. SmartSpice-
64 meets these needs with true
SPICE accuracy, virtually unlimited
address space, efficient memory
compression algorithms, multiple
solvers for convergence, and parallel
processing to decrease run-time.

The Simulation Standard, circulation 18,000 Vol. 13, No. 6, June 2003 is copyrighted by Silvaco International. If you, or someone you know wants a subscription to this free publication, please
call (408) 567-1000 (USA), (44) (1483) 401-800 (UK), (81)(45) 820-3000 (Japan), or your nearest Silvaco distributor.

The following trademarks and service marks are the property of Silvaco International. Registered Marks:® Virtual Wafer Fab, Silvaco. Trademarks: ™ Simulation Standard, ATHENA, Analog
Alliance, Legacy, Manufacturing Tools, Automation Tools, SFLM, VICTORY, Ranger3D Nomad, VYPER, SmartSpice, PSTATS, UTMOST IV, Measure, DISCOVERY, MERCURY, Optolith,TCAD
Driven CAD, TonyPlot3D, RESILIENCE, Flash, ATHENA Interpreter, Interactive Tools, DeckBuild, DevEdit, ANALOG EXPRESS, CELEBRITY, SSuprem3, ATLAS, ATLAS Interpreter,
Luminous2D/3D, MC Implant, S-Pisces, TonyPlot, FastLargeSignal, SmartStats, Ferro, DevEdit3D, Interpreter, Quantum2D/3D, SDDL, Circuit Optimizer, MaskViews, TFT2D/3D, Radiant,
SSuprem4, Elite, FastBlaze, Mocasim, Silicides, MC Depo/Etch, FastNoise, Clarity, Blaze/Blaze3D, Device3D, Frontier, TwinSim, MixedMode2D/3D, VCSELS, Maverick, Envoy, Giga2D/3D,
FastGiga, Guardian, Scout, FastMixedMode, Laser, Dragon, Expert, Spirit, Beacon, Savage, Harm, Zenith, Vision, Scholar, SN, UTMOST, UTMOST II, UTMOST III, UTMOST IV, PROMOST,
SPAYN, ExpertViews, UTMOST IV Fit, FastSpice, Twister, Blast, MixSim, SmartLib, TestChip, Promost-Rel, RelStats, RelLib, Ranger, LISA, QUEST, EXACT, CLEVER, STELLAR, HIPEX-RCR,
HIPEX-Net, HIPEX-RC, Connecting TCAD to Tapeout, and UTMOST IV Spice Modeling. All other product or company names are trademarks of their respective owners.

 The Simulation Standard Page 16 June 2003 June 2003 Page 17 The Simulation Standard

Q:I have some trouble counting the number of in-
stances in a layout using Expert. I have tried to use
the Chip Rover feature, but it does not give the right
answer. I have the same cell instanced repeatedly in an
array. What is the procedure for counting the number
of occurrences of an instance in a top cell?

A: The Chip Rover>>Active Cell Tree shows the number
of instances and arrays in the current cell. To see the
number of instances in each array, expand the tree as in
Figure 1. If there are arrays in it, multiply number of rows
by number of columns to get cell count within the array.

The Edit>>Search command allows to find all cell in-
stances and arrays in the Cell Hierarchy. To calculate
the number of instance’s occurring in a cell, check the
number of rows and columns for each found object.

For complex cell hierarchy or if this operation is fre-
quently performed, it would be more efficient to use
LISA script to automate the routine as shown below:

listCells = “”;

aCellNames = get_cell_list(“”);

nCountCells = aCellNames.size;

i = 1;

LOOP BEGIN

 IF (i GTR nCountCells) THEN (LEAVE LOOP);

 $$objs = (find objects (SEARCH_INSTANCE)

 /criteria = ({search_criterion_create(OA_
CELL, aCellNames[i], EQ)})

 /visible);

 IF ($$objs.size GTR 0) THEN BEGIN

 IF (listCells EQL “”) THEN (listCells =
(aCellNames[i]))

 ELSE (listCells = listCells & “\t” &
(aCellNames[i]));

 END;

 i = i + 1;

END;

varparams = {{listCells, “Instance of cell”}};

dlgparams = {“Instance count”};

vars = form_create(varparams, dlgparams);

if (vars.size GTR 0) THEN BEGIN

 display(vars[1]);

 $$objs = (find objects (SEARCH_INSTANCE)

 /criteria = ({search_criterion_create(OA_
CELL, vars[1], EQ)})

 /visible);

 len = $$objs.size;

 display(len);

 $$cur_obj = $$objs.first;

 count = 0;

 LOOP BEGIN

 IF ($$cur_obj EQL nil) THEN (LEAVE LOOP);

 display($$cur_obj.shape & “(“&&$$cur_obj.cols &
“, “ & $$cur_obj.rows&”)”);

 count = count + $$cur_obj.cols * $$cur_obj.rows;

 $$cur_obj = $$objs.next;

 END;

 display(count); ! Display count or write to file

END;

Hints, Tips and Solutions
Galina Makovsky, Applications and Support Engineer

Figure 1. There are 9 instances of mux1 in the current cell ([2,4]
= 8 instances)

Call for Questions
If you have hints, tips, solutions or questions to contribute,

please contact our Applications and Support Department
 Phone: (408) 567-1000 Fax: (408) 496-6080

e-mail: support@silvaco.com

Hints, Tips and Solutions Archive
Check our our Web Page to see more details of this example

plus an archive of previous Hints, Tips, and Solutions
www.silvaco.com

Figure 2. Counting the number of instances, using Search

 The Simulation Standard Page 18 June 2003

Contacts:

Silvaco Japan
jpsales@silvaco.com

Silvaco Korea
krsales@silvaco.com

Silvaco Taiwan
twsales@silvaco.com

Silvaco Singapore
sgsales@silvaco.com

Silvaco UK
uksales@silvaco.com

Silvaco France
frsales@silvaco.com

Silvaco Germany
desales@silvaco.com

USA Headquarters:

Silvaco International
4701 Patrick Henry Drive, Bldg. 2
Santa Clara, CA 95054 USA

Phone: 408-567-1000
Fax: 408-496-6080

sales@silvaco.com
www.silvaco.com

Products Licensed through Silvaco or e*ECAD

