
TCAD Driven CAD A Journal for CAD/CAE Engineers

Introduction

The DVCS subsystem of CELEBRITY CAD
suite provides significant improvement in
management of complex designs, design reuse
and teamwork management. The most
important features of DVCS are the means for
version tracking and team design coordination.
Projects within DVCS follow the client-server
architecture. The shared project files are saved
into the Repository. The Repository is a special
DVCS database controlled by the DVCS server
process. When sharing a project between two or
more developers, the Repository enables the
task to be accomplished quickly and efficiently.
When adding a file to DVCS, the file is backed
up in the Repository and made available to
other people. Changes that have been made to
the file are saved, however, old versions can be
recovered at any time. Members of a team can access
the latest version of any cell, make changes, and save a
new version of the cell in the database. DVCS project
organization makes team coordination easy and
intuitive. When a project is connected to DVCS, the
DVCS server makes it easy to share and secure different
versions of a selected set of cells.

Before users can add projects to the Repository, they
must create one or more projects in the working
directory. After creating a project, the user can add
projects from their computer to the Repository.

DVCS can maintain multiple versions of cells, includ-
ing a record of the changes to the file from version to
version. Version control addresses the following areas:

� Team coordination — making sure that only one
person at a time is modifying a cell. This prevents
cells from accidentally being replaced by another
user's changes

� Version tracking — tracking old versions of cells ,
which can be retrieved for change tracking and
other purposes

The working area is the directory where the user actually
works with their design. When "Check Out Project" or
"Get Project" is selected, DVCS copies the item into the
working area. After making changes to the project and
checking it in, DVCS copies it from the working area
back into the DVCS database. From then on, DVCS
manages the working project by creating cells as needed
on the computer when projects are checked out.

The "Cell Management" dialog displays important status
information, such as current connected projects, search
criteria, status of cells, and so on. Some of this information
is shown in columns, and other information is shown in
the additional "Details" and "History" dialog boxes.

Volume 11, Number 6, June 2000

Design Version Control System for Expert

INSIDE
Maverick and Guardian - Enhancements 3

Dragon DRC: Performance Improvement Techniques 6

Parametric-Cells Implementation in Expert 8

Calendar of Events . 10

Hints, Tips, and Solutions . 11

Continued on page 2....

Figure 1. Design version control interface.

SILVACO
INTERNATIONAL

When a cell is checked in, this dialog shows the
corresponding timestamp and user name.

Version Control and History
DVCS provides version control and history services, to
ensure that each version of a cell is recoverable. The
unique version of a cell is registered each time when a
changed cell is checked in. The unique internal version
of a project is maintained by DVCS during any changes
made in the project. The user has no control over these
numbers. Every version of every cell and project in DVCS
has a version number. The version number is always an
integer number and it never decreases with time.

Version number:

� Assigned automatically by DVCS,

� Always an integer numeric value

� Always increases to next integer number

� Increases each time an action that affects storage is
taken on a cell or project, such as adding or checking in

� Displayed in history and cell properties dialog boxes

� Cannot be edited or changed by user

User Management, Security, Access Rights
DVCS uses the operation system user maintenance
means to control the rights of access to DVCS. DVCS
Administrator can add and delete users, assign access
rights to projects, and change their access to DVCS.
When new users are added, by default they have full
access to a project.

When you install DVCS, the default security system is
enabled. The administrator can, however, customize
security in the installation to allow only specific users to
have access to certain projects and certain commands.

Default Security
Default security in DVCS installation is simple. The
administrator has only two levels of access rights to
choose from when adding new users to the DVCS
installation:

� Read-only rights: The user can see everything in
DVCS but can change nothing.

� Read/write rights: The user can see and change
anything in the DVCS database.

Each time a user is added to the installation, the level of
access rights for the new user must be determined. The
"Add User" dialog box contains a check box labeled
"Read only". When selecting this check box, the new
user can read files but not change them. If these levels of
access rights are adequate nothing further needs to be
done to to enhance security.

Setting Security for DVCS Administrator
All DVCS security is governed by DVCS Administrator.

Any user can be assigned DVCS Administrator, so
access to the Administrator program is protected. To
grant Administrator rights to users and setup
Repository, an existing Administrator must use Server
Administrator utility.

Project Security / User Access Rights
Project security in DVCS is based on user access rights.
Each project is accessible only to those users who have the
appropriate rights. Each command can be used only by those
users who have the rights associated with that command.

There are four user access rights, described in the
following table.

Note: Each access level includes all the levels that
precede it. For example, the Change rights includes the
Read-Only rights.

Conclusion
Design Version Control System used together with
Expert Layout Editor and other CELEBRITY CAD
tools significantly enhances productivity for large
projects in multiuser design environment. This is
achieved by its advanced capabilit ies, such as
concurrent access to shared design files, version control
and security enforcement.

At the same time, a single designer will benefit from
better project manageability delivered by DVCS. For a
single-user mode, the installation and running of DVCS
is extremely simple and transparent, and it does not
carry any setup and training overhead usually associated
with complex systems.

The Simulation Standard Page 2 June 2000

Figure 2. Cell history dialog box.

Rights Description

Administrator Add new project and delete existing
project by using such commands as
Add Project To DVCS, Delete Project
from DVCS.

Full access Add new cells and delete existing cells by
using such commands as Add, Delete,
and Rename. Change technology by
using Check Out Project, Check In Project.

Change Modify cells by commands Check Out,
Check In, and Undo Check Out.

Read-Only View, but not change, files by using such
commands as View, Get, Get Version.

No access No access to project.

Introduction
The latest release of Layout versus Schematic tools from
CELEBRITY CAD suite (Maverick full-chip parametric
netlist extractor and Guardian hierarchical netlist
comparator) delivers a number of significant advances.
The engines of both tools were tuned up to achieve
essential reduction of running time while processing
huge designs. Maverick and Guardian became integrat-
ed more with other CELEBRITY systems. They provide
extended setups that are easily customized, and offer
new functions that serve to achieve better precision for
parameter extraction. Maverick and Guardian reduce
the number of verification/ modification iterations.

LVS CROSS-VIEW NAVIGATOR
LVS Cross-View Navigator provides easy and conve-
nient way to analyze the results of the LVS run and to
make necessary corrections in the design. Using this tool
(Figure 1) makes it possible to view all nodes men-
tioned in reports directly on layout and schematic
graphical views from the perspective of both netlists
(extracted from layout and derived from schematic)
involved in comparison.

Utilizing the capabilities of Silvaco Intertool
Communication Server (Figure 2), LVS Navigator
provides drive among basic LVS results, points out the
relevant node names on target report and netlists
(Figure 3) and highlights images of devices (Figure 4) or
nets (Figure 5) simultaneously in Expert Layout
Processor and Scholar Schematic Capture.

SHOW SCOPE: The user of Cross-View Navigator is
offered with the possibility to trace any subset or full
scope of the related views:

� Post-run LVS report from one of the predefined
categories (see the following)

� SPICE Netlist extracted from layout cell

� SPICE Netlist produced by schematic capture

� Layout presented in the active window of Expert
layout processor

� Schematic drawing loaded in Scholar schematic
capture graphical window

The flexible scope gives the user the convenience of
having a small number of views necessary for the
particular verification activity on the screen.

NODE TYPE: As long as all basic LVS reports (matches,
discrepancies, etc.) are split between relations involving
nets and devices, LVS navigator works in one of the
two corresponding modes - to show nets or instances
(devices) inside all views included into the show scope.

REPORT CATEGORY: The set of design elements to
be browsed during particular navigation session is
defined by the nature of the report under consideration.
LVS Cross-View Navigator supports (Figure 6) four
categories of reports for browsing control:

� Matched Nodes (based on LVS report which is
contained in .MTC file)

� Unmatched Nodes (based on .UNM file)

� Discrepancies (based on .UNM file)

� Parameter Errors (based on .PAR file)

Note the difference between discrepancies and
unmatched nodes. Both of them reference nets and
instances (devices) that had not been matched by
Guardian. For discrepancies, potential matches are
generated by the tool (in most cases it means that if
some local errors were fixed, these nodes would
match), while for unmatched nodes they are not
produced. For example, if one of the netlists contains
some extra device which cannot be merged with other
ones and has no equivalent in another netlist, the mentioned
device should be classified as an unmatched node.

June 2000 Page 3 The Simulation Standard

Maverick and Guardian -
Enhancements

Figure 1. Workbench of LVS Navigator.

Figure 2. Reference Panel of
Inter-Tool Communication Server.

ACTIVE NETLIST / BROWSE STRATEGY: These settings
affect the order of LVS report processing in the case of
hierarchical netlists. ACTIVE NETLIST determines the
netlist whose hierarchy will be taken into account while
applying the selected strategy. STRATEGY, in turn, can
be Top-Down or Down-up. The first choice means that
references from the active netlist that are taken from the
root (top) subcircuit are processed first, then the
references are taken from primary instances from the
root, and so on down to the leaf subcircuits (which do
not contain instances of the other subcircuits).

SUBCIRCUIT: The choice of a subcircuit from the
active netlist is provided to reduce navigation to those
nodes that are contained in this subcircuit.

NAVIGATION COMMANDS: The "Start" command
serves to activate the browsing list after changing any
options (category, strategy etc.). The "Next" and
"Previous" commands provide the initiation (highlighting)
of nodes which are mentioned in the browsing list after
or before the currently processed ones.

Extended Specifications for Resistor
Parameters in Maverick
Maverick extracts geometry-dependent resistance value
for resistors. The efficient numerical procedure
implemented in Maverick provides high accuracy of
extracted resistance values for resistors of arbitrary
configuration. Theoretically, those values like head and
contact resistance traditionally prescribed to some
resistors are not needed, because the head shape is
taken into account automatically. For contacts a

separate type of resistor could be defined. However, to
meet common approaches, some extensions in definition
of resistors were made (Figure 7). This provides more
flexibility in definition of device recognition layers for
various types of resistors.

To extract the value of the resistance, the user has to
specify non-zero value for at least sheet resistance.
Contact resistance is treated as the resistance of a single

The Simulation Standard Page 4 June 2000

Figure 3. Combined View of Compared Netlists and Active
LVS Report

Figure 4. Device Cross-View initiated by LVS Navigator

Figure5. Highlighting of nets in Expert and Scholar drawings.

contact shape. If actual connection of a resistor head has
been designed using a group of contact shapes, resis-
tances of all of those shapes are summed as usual paral-
lel resistors.

If resistor heads are parts of resistor recognition layers
(see, for instance, grey area in Figure 8), then the head
resistance is calculated from geometrical information
and sheet resistance value is specified. The value of head
resistance shown in Figure 7 is ignored in this case.

If the resistor recognition shape (see the hatched area in
Figure 9) does not cover the resistor head's areas, then
the head resistance is not calculated. The extractor
utilizes the value of head resistance shown in
Figure 7 instead.

Resistance extraction routines need sheet resistance
value (in Ohms/square) to be specified for the resistor
recognition layer in the technology file. This can be
done in the way as the following fragment of Expert
technology file shows.

Layer

{

Name = "N-Act"

...

Material

{

MaterialName = ""

Resistivity = 555

Permittivity = -1.00

Thickness = 1.00

}

}

The layer N-Act is the resistor recognition layer with
sheet resistance equal to 555 Ohm/square. The whole
set of resistor parameters is specified using the set of
the following constructions within Device statement.

DevParam

{

NameP = "XXXXXXXXX"

ValueP = 100

}

NameP can be one of the following predefined strings:

"SheetRes" for sheet resistance

"DeltaW" for width outdiffusion parameter

"DeltaL" for length outdiffusion parameter

"HeadRes" for head resistance

"ContRes" for contact resistance

ValueP indicates the actual numerical value of the parameter

Conclusion
Silvaco's verification suite (Maverick, Guardian,
Savage, Dragon) is a dynamically developing system,
permanently adjusting to the diversity of customer
needs. The evolution of verification tools is followed
by their tight integration with layout processor and
schematic capture. This allows the designers to run
complicated projects much faster and more accurately.

June 2000 Page 5 The Simulation Standard

Figure 6. Choice of Report Categories in LVS Cross-View
Navigator

Figure 7. Extended resistor setup

Figure 8. Resistor heads are parts of recognition layers:
automatic calculation of head resistance.

Figure 9. Resistor heads are not in recognition layers: head
resistance should be prescribed.

Introduction
Dragon DRC is a new advanced hierarchical
DRC system. The design principles this
system is based on are carefully selected
to ensure that Dragon DRC will deliver
maximum performance in different
execution environments. Designed as a
highly adaptive and truly hierarchical
DRC system, Dragon is able to execute
DRC scripts much faster than any flat
DRC system in most real-life cases.
An important feature of Dragon is its
multithreaded parallel processing
capabilities implemented at several
system levels including parallel processing
of layout, parallel execution of DRC
commands and a number of internal
parallel algorithms. Even though a
well-thought-out implementation of the parallel
hierarchical approach to layout DRC alone results in
substantial performance boost over flat DRC system,
Dragon is also able to carry out various preliminary and
run-time optimizations of DRC script. The main purpose
of the above optimizations is to generate the optimal
schedule of execution of DRC commands, so that all
components of the system will be used with maximum
efficiency throughout the whole execution process, both
in single processor environments and in multiprocessor ones.

Operation Coupling
To improve DRC performance on single processor systems,
Dragon implements a separate scheduling algorithm
called operation coupling. This technique is based on
the fact that an atomic operation of the internal DRC
engine of Dragon can be much more complex than an
average single operation of a typical DRC script. Several
operations from the script can be combined into one
internal DRC operation and executed simultaneously,
which is considerably faster than executing them one by one.

A straightforward example of such optimization can be
easily built from several Boolean operations (see Figure 1).

However Dragon's script optimization capabilities are
not limited to merging simple Boolean operations into
Boolean formulae [1]. Implementation of almost all
supported DRC operations in Dragon is based on
various modifications of the widely known scanline
technique [2]. The fact that internal algorithmic engines

for operations from different groups, such as Boolean,
Select and Spacing Check operations, are based on the
same foundation opens great opportunities for effective
operation coupling. The separate component of Dragon
DRC called DRC script execution scheduler is
responsible for detecting and realizing all reasonable
operation coupling opportunities in a given DRC script.
On multiprocessor systems the same component of
Dragon DRC also takes care of generating parallel
execution schedule for the script (see below).

Parallel Processing at Script Level
Even though the operation coupling technique
described above possesses a substantial potential for
optimization of DRC script execution process, Dragon
takes additional steps in order to achieve even higher
DRC performance on multiprocessor systems. As was
mentioned above, there is a number of relatively
independent parallel DRC algorithms implemented
in Dragon.

The DRC script execution scheduler introduced above
is also responsible for parallel DRC script execution.
Both parallel execution schedule and operation
coupling schedule for DRC script are created by
analyzing the informational dependencies of operations
within the script. The primary target of the scheduler is
to split the graph of informational dependencies of the
given DRC script info separate operation clusters, each
consisting of a bunch of easily coupled and highly
dependent operations. After that it can generate one or

The Simulation Standard Page 6 June 2000

Dragon DRC:
Performance Improvement Techniques

Figure 1. Simple example of operation coupling

more coupled DRC operations for each cluster
and, finally, produce a schedule of parallel
execution such that independent operations from
different clusters are carried out simultaneously.

It is easy to see that in many cases the same
set of DRC operations can be optimized in
accordance with either operation coupling or
parallel execution approach (see Figure 2).

Because of that it is often possible to generate
several execution schedules for the same
DRC script. Either one might be optimal
depending on different external parameters,
i.e. parameters of DRC execution environment
(including the number of available processors,
amount of available virtual and physical
memory and other system parameters). For
this reason Dragon is equipped with a number
of well-balanced heuristic criteria which are
used to analyze the execution environment so
as to properly adjust the DRC script scheduler
priorities and fine-tune its internal algorithms.
As a result, it is expected to generate the
execution schedule optimal for a given DRC
script in a given execution environment.

Parallel Processing at
Command level
Still another important parallel processing technique is
employed by Dragon during the execution of one DRC
command. The technique is layout-related, not
DRC script-related as the one above. Working with a
hierarchical layout, Dragon executes each DRC operation
in cell-by-cell manner. In multiprocessor environment
groups of cells can be processed simultaneously, i.e., in
parallel mode. Of course, in most practical cases a
hierarchical layout cannot be treated as just a collection
of independent cells. On the contrary, internal geometry
of one cell may have many interactions - overlaps - with
geometry of other cells in many places in the layout.
This can substantially complicate its hierarchical
processing during DRC. In order to obtain correct and
exhaustive DRC results and at the same time increase
system's performance, Dragon uses a number of
algorithms to preprocess the existing layout hierarchy.
It dose this by rebuilding it in order to decrease the
amount of cell interaction in the layout (resolving
overlaps). That includes selective flattening of overlapping
cell instances, overlapping instance merging, array
decomposition and other techniques of cell interaction
resolving. It is important to mention here, that whatever
changes were made to the initial layout hierarchy by
internal Dragon algorithms, the DRC results can always
be reported in terms of the original hierarchy [3].

By preliminary resolution of cell interactions in the
layout, Dragon can significantly increase the efficiency
of parallel cell processing during DRC. The special
component of the program called cell processing
scheduler keeps track of all known or potential cell
interactions and makes sure that all cells that can be
processed by parallel threads are processed that way.
The growth of the number of parallel threads created
by Dragon at all supported levels of parallel processing
is limited by available system resources.

Conclusion
The powerful performance improvement approaches
described above are built into other proven by time,
carefully tuned and fit together components of Dragon
DRC system to guarantee its top performance.

References

[1] Application of Scan Line Methodology to Perform Metric Operations
in DRC. Simulation Standard. Volume 8, Number 12, December
1997, pp. 7-9.

[2] V. Feinberg. Geometrical problems of VLSI computer graphics,
Radio i Sviaz, Moscow, 1987.

[3] Savage Enhanced with Recognition and Reporting of Hierarchical
Structure of Errors. Simulation Standard. Volume 9, Number 3,
March 1999, pp. 1-4.

June 2000 Page 7 The Simulation Standard

Figure 2. Operation coupling and parallel execution - two alternative ways of
DRC performance improvement

Introduction
A parameterized cell (P-Cell) is a cell with user-specified
parameters. It is possible to create customized p-cell
instances with different composition according to
parameter values.

Using P-Cells gives a considerable memory reduction in
the case of multiple instancing of a cell. Expert layout
editor creates temporary ordinary cells for each set of
parameter values. All instances of a P-Cell with the
same parameter values refer to the same ordinary cell.
P-Cells are stored in the Expert database in the form of
LISA procedure. Temporary cells are not stored in the
database file.

Moreover, P-Cells add enormous flexibility to design
and increase designer productivity. The notion of cells
allows the designer to avoid repetitive drawing of
identical pieces of layout. P-cells provide an additional
benefit: a user can quickly introduce changes into the
layout by modeling the parameters of an instance of P-
Cell rather than redrawing the geometry.

Creating and using P-Cells in the Expert environment is
extremely easy.

Creation of P-Cell involves three actions described below:

� write the XI script that actually generate the P-cell
� specify parameters
� compile the definition of P-cell.

There are two ways to create and modify P-Cell XI
script: automatically using menu commands "PCell >>
Parameters ..." and "PCell >> Compile" or manually
through menu command "Cell >> New ...". The first
method allows the user to create simple P-Cells. To
create complex P-Cells the user can use powerful fea-
tures of LISA/XI language that are impossible to gener-
ate automatically.

Automatic Generation of P-Cell
For automatic generation of P-Cell the user must open
any ordinary cell from the processed project or activated
libraries and select "PCell >> Parameters ..." menu
command. The "Cell Parameters" panel appears, see Figure 1.

The button "Add new parameter" selects and adds new
parameter to the P-Cell. Various parameter definitions
are associated with specific parameters (stretch, repetition,
conditional inclusion, and so forth). "Parameter
definition" group of "Cell Parameters" panel is to specify
parameter definitions for the selected parameter. As a
rule, parameter definition has a name and default value
which are used in the instancing dialog when you want
to place an instance of the P-Cell.

Stretch parameters change the size and position of
layout objects that are included in the specific stretch
group. The name of the stretch group must be either an
ordinary name or XI expression. Stretch line is used to
select objects and determine the stretch direction. The
horizontal stretch line controls up and down direction
and the vertical stretch line controls left and right direc-
tion. Directions are indicate using "Direction" combo
box. Default dimension will be used in the instancing
dialog as default parameter value. Minimum and
maximum value is used to control value in stretching
the cell.If the "Stretch Repeated Object" box is checked,
then objects included into stretch and repetition groups
will be stretched.

Repetition parameters are to repeat objects from repeti-
tion group in x direction, y direction, or both direc-
tions, see Figure 2. User’s can add or remove objects
from the repetition group by using the
"Include/Exclude" button. The main repetition parame-

The Simulation Standard Page 8 June 2000

Parametric-Cells Implementation in Expert

Figure 1. Main dialog for parameter insertion into the master
cell: Stretch parameter.

Figure 2. Repetition parameters. Figure 3. Conditional inclusion

ters are "Stepping Distance" (distance between repeated
objects) and "Number of Repetition". Any name or valid
XI expression can be used to specify this parameters. If
the "Dependent Stretch" edit field name of the previously
defined stretch group is typed in then objects from repeti-
tion group will be stretched after repetition.

Conditional inclusion parameters define the group of
objects that are included or excluded from the cell
depending on the condition, see Figure 3. The name of the
condition group must be any name or valid XI expression.

When parameter definitions are complete, the P-Cell must
be complied before the user can place instances of this cell.

Textual creation of P-Cell
To create a P-cell by coding its xi-procedure, the
"Parameterized cell" option in the "New Cell" panel
must be checked, in addition to cell name and library
selection. After the "OK" button is clicked, the user will see
the "Parameterized Cell Panel" and the empty layout window
for this cell, see Figure 4. This panel has its own menu.

To define or modify parameters, select the P-cell Panel
menu command "Parameters", see Figure 5. For each
parameter the user must type its name, select type of

parameter and set a default value. There are four types
for parameters: double integer, boolean and string.

The P-Cell Panel has a large editing field for typing a
P-Cell XI script. This editor has the same standard
features as a typical Windows editor. The following
common editing commands are available for editing in
the P-Cell Panel from its Edit menu: cut (Ctrl-X), copy
(Ctrl-C), paste (Ctrl-D), clear selection (key),
delete all, find, replace. Pieces may be cut from other
scripts and pasted into the P-Cell Panel. The difference
from the ordinary XI-script panel is that of the
"Define Command" statement, can not be edited i.e.,
the beginning and the end of the script. It is generated
automatically by Expert. The non-editable text is gray
in color. All other necessary commands may be typed
inside the outermost Do Begin...end statement.

The "PCell>>Compile" command of the P-Cell Panel
menu compiles the definition of the P-cell into Expert
database. If compilation passed without errors, the
compiled P-cell is stored in the library and is ready to
use. The layout window shows the drawing of the
P-cells with default values of its parameters, see Figure 6.

Instancing of P-Cell
If a parameterized cell is activated for instancing, then
the Create Instance dialog assumes the form shown in
Figure 7. The values of the parameters may be edited
by after clicking them with the mouse.

June 2000 Page 9 The Simulation Standard

Figure 5. Parameter specification window.

Figure 4. P-cell xi-script panel.

Figure 6. Completed P-cell definition Figure 7. Instancing of a P-cel

The Simulation Standard Page 10 June 2000

The Simulation Standard, circulation 18,000 Vol. 11, No. 6, June 2000 is copyrighted by Silvaco International. If you, or someone you know wants a subscription to
this free publication, please call (408) 567-1000 (USA), (44) (1483) 401-800 (UK), (81)(45) 341-7220 (Japan), or your nearest Silvaco distributor.

Simulation Standard, TCAD Driven CAD, Virtual Wafer Fab, Analog Alliance, Legacy, ATHENA, ATLAS, MERCURY, VICTORY, VYPER, ANALOG EXPRESS,
RESILIENCE, DISCOVERY, CELEBRITY, Manufacturing Tools, Automation Tools, Interactive Tools, TonyPlot, TonyPlot3D, DeckBuild, DevEdit, DevEdit3D,
Interpreter, ATHENA Interpreter, ATLAS Interpreter, Circuit Optimizer, MaskViews, PSTATS, SSuprem3, SSuprem4, Elite, Optolith, Flash, Silicides, MC
Depo/Etch, MC Implant, S-Pisces, Blaze/Blaze3D, Device3D, TFT2D/3D, Ferro, SiGe, SiC, Laser, VCSELS, Quantum2D/3D, Luminous2D/3D, Giga2D/3D,
MixedMode2D/3D, FastBlaze, FastLargeSignal, FastMixedMode, FastGiga, FastNoise, Mocasim, Spirt, Beacon, Frontier, Clarity, Zenith, Vision, Radiant,
TwinSim, , UTMOST, UTMOST II, UTMOST III, UTMOST IV, PROMOST, SPAYN, UTMOST IV Measure, UTMOST IV Fit, UTMOST IV Spice Modeling,
SmartStats, SDDL, SmartSpice, FastSpice, Twister, Blast, MixSim, SmartLib, TestChip, Promost-Rel, RelStats, RelLib, Harm, Ranger, Ranger3D Nomad, QUEST,
EXACT, CLEVER, STELLAR, HIPEX-net, HIPEX-r, HIPEX-c, HIPEX-rc, HIPEX-crc, EM, Power, IR, SI, Timing, SN, Clock, Scholar, Expert, Savage, Scout,
Dragon, Maverick, Guardian, Envoy, LISA, ExpertViews and SFLM are trademarks of Silvaco International.

For more information on any of our workshops, please check our web site at http://www.silvaco.com

1
2
3
4
5 IITC - San Francisco, CA

DAC - Los Angeles, CA
6 IITC - San Francisco, CA

DAC - Los Angeles, CA
7 IITC - San Francisco, CA

DAC - Los Angeles, CA
8
9
10
11
12 HiTEC -Albuquerque, NM
13 HiTEC -Albuquerque, NM
14 HiTEC -Albuquerque, NM
15
16
17
18
19
20
21 EWLTE Noordwijk, -

The Netherlands
22 EWLTE Noordwijk, -

The Netherlands
23 EWLTE Noordwijk, -

The Netherlands
24
25
26
27
28
29
30

June
1
2
3
4
5 10th Fine Process

Technology - Tokyo, Japan
6 10th Fine Process

Technology - Tokyo, Japan
7 10th Fine Process

Technology - Tokyo, Japan
8
9
10
11
12 IWAM - Tokyo, Japan
13 IWAM - Tokyo, Japan
14 IWAM - Tokyo, Japan
15
16
17
18
19
20
21
22
23
24 NSREC - Reno, Nevada
25 NSREC - Reno, Nevada
26 NSREC - Reno, Nevada
27 NSREC - Reno, Nevada
28 NSREC - Reno, Nevada
29
30
31

July

Calendar of Events

EWLTE
Silvaco travels to The Netherlands for this year’s
4th European Workshop on Low Temperature
Electronics from June 21st through the 23rd. We
predict further excitement about our tools, which
continue to revolutionize TCAD Driven CAD.

Japan
Silvaco’s Japan offices are leading the way in the
semiconductor development hub of Japan. Our
Japanese team will be at 2 important conferences
in Tokyo. Don’t miss the 10th Fine Process
Technology Conference and 7th International
Workshop on Active Matrix & TFT Technology.

B u l l e t i n B o a r d

NSREC
The last big conference of the summer is the 2000
IEEE Nuclear and Space Radiation Effects
Conference. Held in Reno, Nevada, you can
gamble on this year’s NSREC being a lot of fun.
In the next issue we will outline our ambitious
schedule for the fall.

June 2000 Page 11 The Simulation Standard

You need to run the first script only once per Expert's
session, e.g., from the autostart xi-script (see
Setup>>General>>Auto run scripts).

!! script: COMPARE.xis

! This script allows you to compare two eld,

gds or apl files,

! even of different formats

! The comparison is performed cellwise and

layerwise by means of XOR

! bFlat parameter selects whether to perform

comparison of flattened cells

! or of cell’s own shapes only.

Q: After each upgrading Expert to a new version I
keep receiving messages, like: "Polygonal font file
"C:\Silvaco\lib\expert\3.0.9.R\x86-NT\polgfont.gds
not found. Please update your settings". How can I get
rid of them once and for all?

A: This file contains drawings for characters used when
you are creating "manufacturable" texts (To do this, use
Edit>>Create>>Text command with Edit>>Numeric
Input mode on and "Polygonal text" option checked on
the Text panel). A polygonal font file is an ordinary gds
file, and you may replace font drawings by your
favorite ones. You may even have several font files and
switch between them.

The mentioned message appears when you de-install
the previous version of Expert and this default file is
deleted. To get rid of it, put your polygonal font file
into a permanent place on your disk and select it into
Expert's Setup>>General.

Q: To simplify netlist extraction, I specify one kind of
diffusion resistors in my layout by means of a special
resistor definition layer. To my surprise, the extracted
value for one such resistor always exactly twice the
value I expected, no matter how I stretch this resistor.
Other resistors (of the same type) are extracted by
Maverick exactly as expected. Moreover, in my
previous version of technology which defined diffusion
resistors by means of intricate DRC operations all
values were good.

A: The most probable reason is that you have duplicated
shapes exactly overlapping each other, so that you do
not see the duplication. Such shapes might result from
erroneous copying. However quite often they are
produced by overlapped cell instances.

When you defined resistors by means of DRC
operations, the resulting device recognition layer could
be merged, e.g., during logical operations, and hence
could not contain overlaps. However when device defi-
nition layers are drawn manually, a common mistake
to leave such layers "as is" for device extraction. Even
for such "simple" device (and pin!) layers you must
always perform merge operation, to avoid the problem
discussed here.

If you don't want to add merge operation (sure, it
slows down the LVS), a good idea is to use the
Cell>>Info command and compare the number of
shapes in the device layer and the number of the
corresponding extracted devices.

The puzzle with stretch resolves easily as well: most
probably, you pick object to stretch by box, so both
overlapping shapes stretch exactly in the same way.

Q: Are there any means to compare two layouts in Expert?

A: You may perform layout comparison tailored exactly
according to your needs by means of xi-scripts. An
example of such scripts is given in Expert’s distribution.
The first script (compare.xis) defines the comparison
command. The second one (compproj.xis) is for data
input. These scripts are included into Expert's
distribution. They are easy to understand, and you may
easily modify them, adding more flexibility and fine
tuning to your needs.

Hints, Tips and Solutions
Mikalai Karneyenka, Applications and Support Engineer

Call for Questions
If you have hints, tips, solutions or questions to contribute, please

contact our Applications and Support Department
Phone: (408) 567-1000 Fax: (408) 496-6080

e-mail: support@silvaco.com

Hints, Tips and Solutions Archive
Check our our Web Page to see more details of this example

plus an archive of previous Hints, Tips, and Solutions
www.silvaco.com

USA HEADQUARTERS

Silvaco International
4701 Patrick Henry Drive
Building 2
Santa Clara, CA 95054
USA

Phone: 408-567-1000
Fax: 408-496-6080

sales@silvaco.com
www.silvaco.com

Your Investment in
Silvaco is SOLID as

While oth-
ers faltered, Silvaco
stood
SOLID

CONTACTS:
Silvaco Japan
jpsales@silvaco.com

Silvaco Korea
krsales@silvaco.com

Silvaco Taiwan
twsales@silvaco.com

Silvaco Singapore
sgsales@silvaco.com

Silvaco UK

uksales@silvaco.com

Silvaco France
frsales@silvaco.com

Silvaco Germany
desales@silvaco.com

Ve n d o r P a r t n e rProducts Licensed through Silvaco or e*ECAD

l Process and Device Application Engineers

l SPICE Application Engineers

l CAD Applications Engineers

l Software Developers

Join the WJoin the Winning Tinning Team!eam!

Opportunities worldwide for apps engineers: Santa Clara, Phoenix, Austin,
Boston, Tokyo, Guildford, Munich, Grenoble, Seoul, Hsinchu. Opportunities for
developers at our California headquarters.

fax your resume to:
408-496-6080, or

e-mail to:
jobs@silvaco.com

Silvaco Wants You!

SILVACO
INTERNATIONAL

