
1. Introduction

In this paper we introduce one of the latest and most ad-
vanced features of Silvaco’s Expert Layout processor for 
Windows NT – DRC Guard. DRC Guard is fully func-
tional real-time design rule checker that works in back-
ground mode and makes extensive use of multithreading/ 
multiprocessor capabilities of operating system. Based 
on a specially optimized and tuned DRC engine, DRC 
Guard works extremely fast and reports results of local 
DRC directly into the layout area in convenient user-
friendly way. DRC Guard automatically checks modi-
fied part of  the layout immediately after the modifica-
tion is made. It also can perform instant DRC in any part 
of layout at the user’s request.

2.  DRC Guard

2.1 Real-time background DRC

2.1.1 Minimizing response time
One of the most interesting problems, which arise in 
real-time DRC system implementation process, is the 
trade-off of response time and number of DRC checks. 
On the one hand, to be of use this system should be able 
to handle DRC scripts that contain substantial number 
of commands. Often some very useful DRC checks can’t 
be expressed by means of a single check command. 
Implementation of such checks may include generation 
of intermediate layers by, boolean or resize operations. 
Several such not very sophisticated multi-command 
checks together may create DRC script consisting of 
hundreds or even thousands of commands which 
should be executed in real-time.

On the other hand, a real-time DRC system should not 
get in the way and make the user wait until execution 
of the script is completed blocking all layout functions. 
No matter how fast is the internal DRC engine, any non-
trivial DRC script being applied in straightforward way 
to each modification made to layout will noticeably and 
unacceptably increase the editor response time.

To resolve this conflict, special techniques have been 
developed that made it possible to implement the real-
time background DRC. Given a multithreaded operat-
ing system (such as Windows NT), the main idea is that 
real-time DRC is separated into a special low-priority back-
ground thread while layout editing is performed by a 
high-priority foreground thread. Instead of calling DRC 
directly after each modification, the layout editor places 
a special record called check request into the real-time 
DRC queue. A check request contains full information 
about what kind of modification was made, which ob-
ject was modified, where it is located, etc. Background 
DRC reads check requests from the queue one by one 
and performs all necessary checks in the corresponding 
area of layout. The real-time DRC queue is a communica-
tion link between the layout editor and the background 
DRC (see Figure 1).
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Figure 1. Layout editor and background DRC communication
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It is obvious that DRC system built on these principles 
will not necessary report all DRC violations immediately 
after they are introduced. But the time gap between an 
erroneous edit and the error report can be negligibly 
small provided the DRC engine is accurately implemented 
and tuned within the whole system. The key is that care 
should be taken to minimize the amount of information 
processed by the background DRC without affecting 
check accuracy (see “Minimizing system resource us-
age” section).

Separation of real-time DRC into an independent thread 
also makes it possible to control its execution prior-
ity with respect to the priority of the layout editor. The 
higher is the priority of DRC the shorter is its response 
time. The lower is the priority of DRC the less notice-
able is its slowing influence on layout editor functions. 
Another great advantage of a multithreaded architecture is 
that on multiprocessor system the real-time DRC thread will 
work on a separate processor. It will result in a substantial 
increase of the performance of the background DRC as 
well as the performance of the layout editor.

2.1.2 Database Synchronization
Although our real-time DRC works as a background 
thread parallel to the layout editor thread, the former 
is not completely independent from the latter. The most 
obvious point of competition between these threads is 
the moment when they try to access the common lay-
out database simultaneously. The execution of DRC on 
some part of layout takes some period of time while 
user is free to modify any part of layout at any moment. 
Under this assumption it appears to be a reasonable 
technique to make a separate copy of local part of lay-
out to be checked – the layout snapshot. After that the 
background DRC is executed on that copy rather than 
on original layout. In this case the problem of database 
access synchronization will take place only at the mo-
ment of snapshot preparation and can be easily solved 
by means of standard thread synchronization methods 
provided by the operating system.

Although such technique of snapshot processing of layout 
works well with batch mode fire-and-forget background 
DRC, it is not free of drawbacks when used in real-time 
background DRC. Suppose that user is making some 
modifications in the part of layout which is being pro-
cessed by DRC at same time. It means that at any mo-
ment the snapshot taken for DRC may become out of 
date. If it does, chances are that the results of this script 
execution will be obsolete as well. To prevent real-time 
DRC from generating obsolete results such, situations 
should be detected. DRC execution stopped and modified 
area scheduled for recheck. The same applies to check 

requests waiting in the real-time DRC queue. Some of 
them may become obsolete before they are processed 
and should be excluded from the queue. This technique 
of exclusion of obsolete check requests leads to substantial 
increase in performance of real-time DRC.

2.1.3 Minimizing System Resource Usage
The amount of data handled by conventional DRC can 
be very large and usually does not fit into the internal 
memory requiring additional external storage space. 
However, it makes sense to use only RAM for real-time 
DRC in order to increase its performance thus reduc-
ing its response time. Of course, when real-time DRC 
is implemented as background thread care should be 
taken to prevent it from occupying too much system 
memory because it always leads to the drop of overall 
system performance. The simplest way is to set a limit for 
the amount of memory allocated for real-time DRC needs 
and cancel DRC script execution whenever the limit is 
exceeded. The corresponding check request from the 
real-time DRC queue is removed without processing. 

Under assumption that the amount of memory back-
ground DRC thread can occupy is limited, the problem 
of most effective utilization of that memory arises. An 
effective method of optimization of real-time DRC re-
source usage is developed. It will be referred to as selec-
tive DRC script execution. When a designer is editing a 
layout most of modifications he makes are localized in a 
particular area and particular layer of the layout. Most 
frequently used operations such as creation or dele-
tion of object or changing shape of object locally affect 
contents of only one layer. Hence, to check whether the 
result of such operation is violating any of DRC require-
ments it is sufficient to execute only those operations 
of DRC script, which are related to the modified layer. 
The problem of extraction of the sequence of the op-
erations to be executed is non-trivial because any check 
operation can reference layers of the layout directly as 
its operands as well as indirectly through a chain of 
layer generation operations (boolean, resize etc.). The 
informational dependency graph of script commands 
can be used to solve this problem efficiently [2]. When 
the sequence of DRC commands is determined, the set 
of input layers for this sequence can be easily obtained. 
Only layers from this set and their objects from area of 
modification should be included in the layout snapshot 
before executing the DRC script. In most cases such pre-
liminary analysis of the script allows faster checking of 
the modified portion of layout because it reduces the 
amount of layout data to be prepared for DRC processing 
and decreases the number of commands to be executed.
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2.2 Using DRC Guard

2.2.1 Operations Recognized by DRC Guard
The background real-time DRC based on the principles 
described above and called DRC Guard was recently 
introduced into Silvaco’s Expert Layout Processor. Once 
set up, DRC Guard watches all modifications which 
are made to the layout and generates immediate visual 
report of all detected errors. Internal DRC engine used 
in DRC Guard is based on very efficient scan-line ap-
proach [1]. It allows DRC Guard to deliver check results 
in true real-time. It is worth to mention that DRC Guard 
supports all types of error report conventional DRC does 
including polygon-shaped errors reported by check 
operations with GT/GE comparison types (see “User 
interface” section and Figure 5).

Setup of DRC Guard is very simple and includes ordinary 
DRC script written in Savage DRC language (see Figure 2). 
Not only check operations but also any command of the 
language can be used in DRC Guard script.

Check requests are placed into DRC Guard queue af-
ter each application of any editing operation such as 
Create Object, Delete Object, Modify Object, Stretch, 
Move, Copy, Cut, Paste etc. Being built into hierarchi-
cal layout editor, DRC Guard is able to handle editing 
operations not only when they are applied to polygons 
but also when they are applied to instances of other 
cells in current one. DRC Guard can also perform quick 
DRC check of any rectangular area of layout by user’s 
request (see Figure 6). DRC Guard also supports Undo 
command. Moreover, DRC Guard produces correct 
and useful results in Expert’s Edit-in-Place mode of 
hierarchical editing.

2.2.2 Error Report on Hierarchical Layout
Since it is implemented in a hierarchical layout editor, 
DRC Guard takes into account hierarchical structure of 
layout when performing DRC checks and displaying 
errors. The purpose of DRC Guard is real-time detection 
of DRC violations caused by user’s modifications currently 
made. It aims for finding and reporting of errors of this 
kind only. If DRC Guard finds some errors that are un-
likely to be caused by user modifications, it does not 
report them to avoid overloading of workspace with 
irrelevant DRC error marks. To carry out DRC check of 
entire layout or its particular part with full error report 
designer can use batch-mode DRC or DRC in Area.

The problem of filtering out irrelevant errors becomes 
more complicated when DRC is executed on hierarchical 
layout, because in this case designer can work not only 
with polygonal shapes but also with instances of other 
cells. Incorrect placement of the instance may induce 
DRC violations, which also have to be detected. DRC 

Guard considers a DRC error as relevant and reports it 
if the error meets certain conditions. More concretely, 
when designer is working with cell C DRC Guard re-
ports all errors that would be dispatched to that cell C 
in accordance with nearest common parent rule used in 
hierarchical DRC [3]. To get all information necessary 
for application of this rule DRC Guard makes use of hi-
erarchical information inheritance technique [3]. 

In simple words, in its search for DRC violations in current 
cell C DRC Guard checks the following relations:

a) between polygons of cell C;
b) between direct and indirect instances of other cells in 

cell C and polygons of cell C;

c) between different direct and indirect instances of 
other cells in cell C.

It is very likely that the actual reason of DRC violation 
detected by DRC Guard in cell C resides nowhere else 
but in cell C [3].

2.2.3 DRC Guard in Edit-In-Place
When user is editing cell contents in the Edit-in-Place (EiP) 
mode the situation is rather different from ordinary 
editing mode. The nature of difference is that the cell is 
edited in its particular placement – the instance – and 
therefore it is surrounded by instance’s environment, 
i.e. objects of its parent cell. At any moment user can 
change edited cell by diving one level down via in-
stance of another cell as well as by climbing on level up. 
Chain of instances used by the user to move between 
levels of hierarchy is called the Edit-in-Place chain (EiP 
chain). EiP chain begins in the topmost cell and ends in 
the current edited cell. Any modification made on certain 
level of hierarchy may induce DRC violation not only on 
that level but also on any higher level up to the topmost 
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Figure 2. DRC Guard Setup is through a user defined options menu.



selected objects. Depending on distribution of selected 
objects over the layout area, application of this operation 
may result in local modification as well as in global one 
affecting the entire layout. In case selected objects are 
relatively far one from another, operation Move can pro-
duce DRC errors outside view area. It means that DRC 
Guard will actually detect all errors but user probably 
will not be able to see all error markers on the screen. In 
such situations Error Locator could be very useful. Error 
Locator consists of small display containing eight ar-
rows and central dot (see Figure 7). Each of eight arrows 
represents particular direction (North, Northeast, East 
etc.) and begins to blink if DRC Guard has detected 
violation in corresponding area outside the screen. 
When mouse cursor hovers over blinking arrow in Error 
Locator, the amount of errors found in that invisible area 
is displayed. The central dot provides the same informa-
tion for visible screen area. Clicking on any of the ar-
rows causes the layout to pan so that the nearest error in 
corresponding direction moves to the center of view area. 
This provides simple and convenient way of navigat-
ing DRC Guard errors.

A number of important additional steps were taken in 
order to achieve further improvement of DRC Guard 
performance, reliability and convenience. We only 
mention some of them here. First, the DRC Guard setup 

one. Moreover, before leaving modified cell user has to 
choose the way of its integration into project structure. 
The options are the following:

1. Explode instance – the instance of edited cell is re-
placed with its polygons in parent cell. DRC Guard 
checks the area of the former instance in parent cell and 
environments of all instances from EiP chain.

2. Save Instance as Separate Cell – DRC Guard checks 
environments of all instances from EiP chain including 
environment of edited instance in parent cell.

3. Change Edited Cell – DRC Guard checks environments of 
all instances of this cell in all their parent cells up to the 
topmost one (including instances from EiP chain).

Such behavior of DRC Guard in EiP mode may seem 
rather complicated but it leads to effective detection of 
all DRC violations caused by modifications made in EiP 
mode. The large numbers of check requests that may be 
generated after EiP modifications do not represent any 
problem because DRC Guard is implemented as back-
ground thread.

2.2.4 User interface
All DRC errors detected by DRC Guard are immediately 
displayed on the screen in form of blinking markers. The 
markers can have different shape depending on type of 
particular violation. For instance, distance violations are 
displayed in form of two-headed arrows and intersec-
tions are marked by circles. When mouse cursor hovers 
above particular error mark the label containing in-
formation about this error is displayed. The information 
includes type of violation and DRC rule that is violated 
(see Figures 3, 4, 5).

Another component which makes DRC Guard’s user in-
terface more convenient is the Error Locator.  Although 
the main purpose of DRC Guard is to check correctness 
of local layout modifications, it can easily handle any 
non-local editing operation. Note that such operations as, 
for instance, Move can change location of all currently 
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Figure 3. Intersection marker (Intersection check)

Figure 5. Maximum distance violation markers (OutDistance GE 
check).

Figure 4.  Minimum distance violation markers (InDistance LT 
check).



dialog box offers three ways to specify the script: manual 
typing, semi-automatic command generation by means 
of dialog boxes, loading from file. Second, the DRC 
Guard script is analyzed, compiled and  optimized in 
special way at setup stage to reduce the initialization 
time of processing of each check request. Third, DRC 
Guard tracks the location of user’s working area on the 
layout and processes in first turn check requests that are 
closer to that area than others. Fourth, the DRC Guard 
thread is carefully isolated from the layout editor thread 
so that accidental crash of DRC Guard doesn’t result in 
crash of the entire layout editor and data loss.

3. Conclusion 

The real-time DRC the Expert Layout Processor is evolv-
ing very rapidly in direction of introducing new user 
interface features, new types of DRC commands and 
speeding up overall DRC performance. In its current state 
DRC Guard is convenient and powerful component of 
the layout editor, which improves speed and quality of 
custom design of integrated circuits.
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Figure 6. Check Area function of DRC Guard.

Figure 7. Error Locator.



Rectangular partitionings form a mathematical base for 
many modern approaches to automation of VLSI design 
[1-3]. In particular, popular methodologies of hierarchi-
cal placement (by cell grouping / merging) as well as 
procedures of global routing and layout compression 
deal with partitions that can be hierarchically subdi-
vided into components of bounded complexity.

The article shows that some tight placements cannot be 
generated by any pairwise merging procedure in the 
class of isotetically convex blocks. 

Isotetically convex blocks (here called blocks, for simplicity) 
are well described in [4,5]. A block P is a closed polygon 
whose boundary consists of line segments parallel to 
coordinate axes, and every horizontal or vertical segment 
connecting any two points of the polygon P belongs to 
P. Rank r of block P is the minimal number of rectangles 
R1, R2, ..., Rr which do not intersect block P and complete 
it to rectangle. In other words:

P  ∪ (∪ Ri, for i=1,2,...,r) is rectangle,
Ri ∩ Rj = ∅ for i,j=1,2,...,r, i != j.
Ri ∩ R = ∅ for i=1,2,...,r.

This definition of rank is equivalent to one introduced in 
[5]. Rank r of block P and number k of block vertices are 
related by equation 

k = 2r + 4.

Figure 1  shows all possible blocks of rank 0, rank 1, and 
three blocks of rank 2 (excluding ones made by symmetry 
transformations).

Let us denote the interior of set A by int(A) and boundary 
of A by fr(A). A set of rectangles 

R = {Ri}, i=1,2,...,n is partition of block P if
1. int(Ri) ∩ int(Rj) = ∅, i != j, i,j=1,2,...,n
2. ∪{Ri, i=1,2,...,n} = P.

There is an evident relation between the structure of 
block and its partition. So we will use same letter P to 

denote both the block itself and it partition. Rectangles 
Ri are called atoms of the partition. The rank of partition 
is the rank of the partitioned block.

Articles [6-7] propose an approach to find the “best” 
placement of isotetic blocks based on the sequence of 
their pairwise merging. This article is intended to show 
an existence of placements which cannot be constructed 
by any sequence of pairwise merge operations over iso-
tetically convex blocks of limited rank.

Let us introduce the following notations:

- V is set of vertices of P atoms;
- F is aggregate of atom boundaries:
  F = ∪ {fr(Ri), i=1,2,...n};
- L is partition of F:
  L = {S=[V1,V2] | (S ∩ V) = {V1,V2}}.

Now we can introduce the notion of cutting. An ordered 
sequence C=(S1,S2,...,St) of segments of partition P cuts 
partition P if:

 - Si ∈ L, i=1,2,...t;
 - (Si ∩ Sj) = Vij, Vij ∈ V if
     and only if i=j+1, or j=i+1; i,j=1,2,...t;
 - (Si ∩ Sj) = 0 if and only if
    i != j+1 and j != i+1, i,j = 1,2,...,t;
 - (C∩ fr(B)) = (Vb, Ve}, where
    Vb = (S1 ∩ fr(B)),
    Ve = (St ∩ fr(B), Vb,Ve ∈  V.

In other words, cutting is a simple path consisting of 
segments of L such that it first and last points belong to 
boundary of block P. C is “through” cutting if Vb and Ve 
belong parallel segments of boundary of P. Otherwise 
cutting is called as “sidelong”.

Every cutting C splits the partition P into non-empty 
subsets P1 and P2. Herein we will consider only cuttings 
which intersections with any horizontal or vertical line are 
connected. In this case ∪(P1) and ∪(P2) are blocks. 
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Recursive Cutting of Rectangular 
Partitions for VLSI Floorplanning

Figure 1. Simplest blocks of bounded rank.



Cutting C2 intersects cutting C1, if C1 cuts P into 
partitions P1 and P2, and C2 is cutting either P1 or P2, 
and just one of end points of C2 belongs to C1.

Let us define the direction of cutting:

   1, if sequences of X and Y coordinates 
of
dir(C) =  vertices are both monotonous;
  0, otherwise;

We will say that block (partition) P can be recursively 
cut into blocks of rank r if partition P contains cutting 
which splits it into non-empty partitions P1 and P2, 
ranks of P1 and P2 do not exceed r, and both blocks P1 
and P2 also can be recursively cut into blocks of rank r. 
It is supposed that a single atom can be cut into blocks 
of any rank. Figure 2 shows three first steps of cutting 
rectangle onto blocks of rank 2.

A set of all partitions recursively cut only onto blocks of 
rank >= r is denoted via P**r.

Theorem. The set P**r is not empty for any positive inte-
ger r. In other words, for any positive integer r there ex-
ists partition which cannot be cut onto blocks of rank r.

To prove the theorem, we will show how to construct 
an example partition P of square which belongs to P**r 
for every pre-defined natural r. The construction will be 
made on 2-dimensional regular integer grid.

Partition P1 from P**1 can be pointed out directly. It is 
the first “snail” drawn on Figure 3. Any through cutting 
splits it into blocks of rank 1. Sidelong cutting splits the 
“snail” into blocks of ranks 0 and 1. So one-dimensional 
“snail” belongs to P**1.

Partition Pr from P**r can be constructed as a square 
containing r rows and r columns. Cell Kij located at 
the intersection of row i and column j, i+j=0(mod2), 
i,j = 1,2,...r, contains “snail” P1. Cell Kij, i+j=1(mod2), 
i,j=1,2,...r, contains partition ~P1 which is mirroring of 
P1 with respect to horizontal or vertical axis. Figure 3. 
shows example partitions P1, P2, P3 and the structure of 
cells for example partition P3.

Partition Pr inherits main property of partition P1. 
Namely, a part of any cutting bounded by bottom (up-
per) side of cell Kij and bottom (upper) side of source 
square contains i-1 (r-i) steps. If this part is bounded by 
cell side and bottom (upper) side of the source square, 
then it contains i (r-i+1) steps.

Now we are ready to show, that any sequence 
C^ =(C1,C2,...,Cq) of cuttings Pr onto atoms will create 
blocks of rank >= r. Blocks created after every cutting 
from C^ can be considered as central (ones contain 
symmetry center of source square) and peripheral 
blocks. Peripheral blocks are out of our interest. We will 
estimate ranks of central blocks. So cuttings peripheral 
blocks can be instantly removed out of C ,̂ and, after 
this operation, C^ can be considered as sequence of 
cutting details out of central point. 

Pr consists of r rows and r columns. As it was noted, ev-
ery through cutting contains r steps. It is true, because 
maximal available length of every segment in Pr is 3 
units and every cutting started and finished on opposite 
sides of the initial rectangle contains r steps and, conse-
quently, it creates blocks of rank r. So, let us assume C^ 
does not contain through cuttings.
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Figure 2. Recursive cutting onto blocks of rank 2.

Figure 3. Based “snail” and generated partitions Pr. 
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The last assumption means that C^ contains at least one 
sidelong cutting for the original square and one addi-
tional cutting which intersects the first one. Otherwise 
it would be impossible to cut out central atom of source 
partition. Let denote this additional cutting by Cp:

 p = min{k | (Ck ∩ Ck )̂ != ∅}, where Ck^ = ∪ 

{Cj, j=1,2,...,k-1}.

As it is noted in [4] , after C1,C2...,Cp-1 cuttings 
the central block is bounded by at most 4 stairways. 
Its general view is shown at Figure 4. Segments F1=(B
1,A2),...,F4=(B4,A1) are parts of boundary of the initial 
square. So, without loosing the correctness, we can as-
sume that first p-1 cuttings in C^ can be replaced by 4 
ones: C1’, C2’, C3’, C4’, where Cj’=(Aj,...,Bj), j=1,...,4.

Now let us consider structure of blocks being created af-
ter all possible configurations of cutting Cp. Let Ap and 
Bp be its first and last vertices, Ap ∈ C1’, Pp1 and Pp2 are 
central and peripheral blocks which are cut out by Cp. 
Taking into account the symmetry of configuration, we 
can consider only the following 6 different cuttings:

1. dir(Cp) = dir(C1’), Bp ∈ F1;

2. dir(Cp) = dir(C1’), Bp ∈ Ck’, k=2,3,4;

3. dir(Cp) != dir(C1’), Bp ∈ C2’;

4. dir(Cp) = dir(C1’), Bp ∈ F2;

5. dir(Cp) != dir(C1’), Bp ∈ F2;

6. dir(Cp) != dir(C1’), Bp ∈ C3’.

In the first case the block Pp1 is bounded by 
(A1,...,Ap,...Bp). It is sidelong cutting. The structure of 
the block Pp1 remains the same as shown at Figure 4. 
We can assume it is built from the original square with 

the help of cuttings (A1,...,Ap,...,Bp), C2’, C3’, C4’. If we 
replace block Pp by block Pp1 and cuttings C1’ and Cp 
in C^ by cutting (A1,...,Ap,...,Bp), then we can recur-
sively consider sequence C^ again without loosing of 
correctness.

In the second case the block Pp1 is bounded either by 
cutting (A1,...,Ap,...Bp) or cutting (B1,...Ap,...Bp). We can 
reduce this configuration to configuration of the general 
case again. With this goal let us repair the central block 
Pp by gluing peripheral block split by C1’ and replacing 
cuttings C1’ and Cp in C^ by boundary of just created Pp1.

The third case can be reduced to the second case by 
re-orientations.

In accordance with assumption cutting cannot go 
through a boundary of the central atom. So reductions 
made during consideration of first three cases are correct 
and we will meet in C^ cutting made by one of rest cases.
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Figure 5. Case 5 of cutting.Figure 4. General structure of isotetically convex block.

Figure 6. Case 6 of cutting.
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In the fourth case the block Pp1 will be bounded by 
(A1,...,Ap,...,Bp). It is through cutting.

Now we consider case 5. Illustrations for it is shown at 
Figure 5. Let Ap ∈ cell Klm. All available intersections 
of cutting C1’ and cutting Cp inside Klm are shown at 
Fig 7. Boundaries of the cell are drawn by thin lines. 
Parts of C1’ and Cp bounded by l-th row are drawn by 
thick lines. Let us denote the contribution of the l-th row 
into the rank of block Pp1 by Sl. It can be easily seen that 
Sl = 1 (for intersections 1,3,5,6,7,9,10,11,12) or Sl = 2 (for 
intersections 2,4,8). Now we can estimate the number 
of steps of the left boundary of block Pp1: (l-1) + Sl + r-l) 
>= r.

The last case is illustrated at Figure 6. Let us assume 
that Ap ∈ Klm, Bp ∈ Kkn. Let us denote contributions 
of rows l and k into rank of the block Pp1 by Sl, Sk, and 
contributions of columns m and n into rank of the block 
Pp2 by Sm and Sn. From the properties of the initial 
“snail” it follows that:

Sl, Sm, Sk, Sn >= 1.

the following conditions are necessary for Pr to be re-
cursively cut into blocks of rank < r:

 (l - 1) + Sl + (k - l) + Sk + (r - n) < r;

 (m - 1) + Sm + (n - m) + Sn + (r - k) < r.

Incompatibility of these conditions shows that there is 
no way to build sequence of cutting in class of isotetic 
blocks with apriory bounded number of vertices. It 
finishes the proof.

The author wishes to express his gratitude to N.Metelsky 
for formulation of the problem and kindly advices.

Summary

There exist a partition of the square into rectangles 
which cannot be synthesized by pairwise block merg-
ing procedure in the class of convex isotetic blocks with 
apropriory bounded number of vertices.
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Figure 7. All possible intersections of cutting inside cell.
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NT-based CAD Design Tools 
Exhibited at ICCAD

Silvaco will be exhibiting the latest 
developements in the PC-based NT Design 
Framework CELEBRITY at the ICCAD 
Conference from 8th-12th November in San Jose, 
CA. New features of the layout editor Expert 
including the DRC On-Guard feature described 
in this issue will be presented. 

Korean University Standardize 
on Expert

Over 60 Korean Universites have decided to 
standardize teaching of students in layout and 
DRC techniques using Expert and Savage. This 
effort is organized and supervised by KAIST, a 
leading science institute. This confirms the leading 
capabilities of Silvaco CAD products and paves 
the way for the future of Silvaco tools in the 
Korean market. 

CAD Division Moves to New Building

Silvaco’s CAD Division has moved into their 
newly refurbished ultra modern building.  The CAD 
building is the fifth Silvaco building at the Santa 
Clara site. The CAD team was recently bolstered 
by 6 new development engineers and this dedicated 
facility gives room for rapid expansion in the 
coming months.
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Hints, Tips and Solutions

 Mikalai Karneyenka, Applications and Support Engineer

Some questions from previous issues are repeated here 
since continued enhancements are introduced in Expert 
to improve designer’s productivity.

Q:  I run DRC, find one-two violations, correct them, 
then I re-run DRC to check whether my corrections     
worked. However re-running on the whole design is 
time-consuming. How can I run DRC over a piece of     
the layout, in the vicinity of the introduced changes?

Recent release of Expert contain two important features 
that avoid multiple batch DRC reruns for the whole design. 

•  “DRC in Area”  command allows you to run DRC 
script to be run it the selected rectangular area of the 
layout.

•  “DRC Guard” allows monitoring of design rule viola-
tions on the fly while editing the design.

Please read the  release notes for Expert v. 156 for 
details. (All release notes are accumulated in the file 
relnotes.txt).

Q1: When I plot my design on a laser printer some re-
gions are not plotted at all.

These dot patterns may be either regular or diffuse ones. 
Stipple mode of filling also uses bit patterns for filling. 
When plotter’s color dot patterns and stipple patterns in-
teract, the results can be totally unpredictable. Therefore 
color matching has chance to work correctly for solid-
filled and wireframe shapes only.

Expert provides two means to alleviate these problems:

- plotting style setup, see Figure 1;

- color libraries.

Plotting style setup, among other possibilities, allows 
you to assign filling modes and colors for layers different 
from the ones used on screen. In particular, in trouble-
some situations is is possible to replace stipple filling by 
hatching. Hatching is filling by “wireframe” lines rather 
than by dot patterns, therefore it does not interfere with 
color matching tricks. However this advantage is linked 
with a drawback: there are six possible types of hatching, 
see Figure 1.

Color libraries allow you to define “named” colors. This 
allows you to predefine a set of “good” colors for further 
use in setups, see Figure 2. 

Q2. Stipple patterns on screen 
and on plot look differently.

A: In both cases the reasons are 
the same. Unfortunately, color 
capabilities of screen and plot-
ting devices often do not match. 
In particular, some nonsaturat-
ed colors clearly visible on the 
screen are mapped into white 
color on the plot. 

One more problem arises if you 
try to plot a layout drawn in 
stipple mode of filling. When 
preparing data for plotting the 
software tries to match  RGB 
values of colors from layout 
to the available set of plotter 
colors. To do so, plotters use 
dot patterns of primary colors. 

Figure 1. Style Setup.
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Figure 2. Color Setup.

Moreover, color libraries for plotter and 
for screen may contain colors with the 
same name, but with different numeric 
RGB values, so that the named color on 
screen will look exactly the same as the 
color with the same name for printer/
plotter. Such separate color definitions 
may be prepared for all types of plot-
ters you have.

Of course, such kind of color/style 
setup requires some tedious tuning, 
including trial printouts. But please 
remember, color library tuning must be 
performed only once.

Q: Expert’s tool bars occupy too much  
screen space. I would like to have more space for layout.

In Expert  the whole screen may be used for editing in 
the following way:

•  using menu Setup>>Customize assign shortcuts to 
most frequently used commands and/or add them 
into the custom menu (the one appearing if you de-
press right mouse button inside design area).

•  remove all unnecessary toolbars;

•  assign shortcuts to show/hide necessary toolbars; 
(suppose you assign key “L” to the Layer bar)

•  holding the CTRL key, drag the necessary toolbars 
so that will not dock to the boundary of Expert’s 
window.

•   then if you press “L” several times, you will see that 
the layer bar shows and hides, while the layout oc-
cupies the whole screen. 

Q: How can I report long parallel interconnect seg-
ments that run too close to each other?

A: An example check is as follows:

OutDistance:

layer1=m1, layer2=m2, type=LT, value=0.25um, 
options=(S1,P,O,L=GE  6um,L1=GE 5um,L2=GE 4um);

Actually, it was generated through the user interface of 
the DRC script panel. Click “Check” at DRC panel, then 
select a basic operation, then click “Options” button.

The following options were selected at the “Options” 
panel:

- parallel

- with projections

- length of segments

- length of errors 1

- length of errors 2

- report error subsegments.

Users should try different combinations of these options 
(and their opposites) and choose what kind of check is 
required.

A more advanced check, similar to the PLENGTH com-
mand, is under development. 
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