
1. Introduction

In this paper we introduce one of the latest and most ad-
vanced features of Silvaco’s Expert Layout processor for
Windows NT – DRC Guard. DRC Guard is fully func-
tional real-time design rule checker that works in back-
ground mode and makes extensive use of multithreading/
multiprocessor capabilities of operating system. Based
on a specially optimized and tuned DRC engine, DRC
Guard works extremely fast and reports results of local
DRC directly into the layout area in convenient user-
friendly way. DRC Guard automatically checks modi-
fied part of the layout immediately after the modifica-
tion is made. It also can perform instant DRC in any part
of layout at the user’s request.

2. DRC Guard

2.1 Real-time background DRC

2.1.1 Minimizing response time
One of the most interesting problems, which arise in
real-time DRC system implementation process, is the
trade-off of response time and number of DRC checks.
On the one hand, to be of use this system should be able
to handle DRC scripts that contain substantial number
of commands. Often some very useful DRC checks can’t
be expressed by means of a single check command.
Implementation of such checks may include generation
of intermediate layers by, boolean or resize operations.
Several such not very sophisticated multi-command
checks together may create DRC script consisting of
hundreds or even thousands of commands which
should be executed in real-time.

On the other hand, a real-time DRC system should not
get in the way and make the user wait until execution
of the script is completed blocking all layout functions.
No matter how fast is the internal DRC engine, any non-
trivial DRC script being applied in straightforward way
to each modification made to layout will noticeably and
unacceptably increase the editor response time.

To resolve this conflict, special techniques have been
developed that made it possible to implement the real-
time background DRC. Given a multithreaded operat-
ing system (such as Windows NT), the main idea is that
real-time DRC is separated into a special low-priority back-
ground thread while layout editing is performed by a
high-priority foreground thread. Instead of calling DRC
directly after each modification, the layout editor places
a special record called check request into the real-time
DRC queue. A check request contains full information
about what kind of modification was made, which ob-
ject was modified, where it is located, etc. Background
DRC reads check requests from the queue one by one
and performs all necessary checks in the corresponding
area of layout. The real-time DRC queue is a communica-
tion link between the layout editor and the background
DRC (see Figure 1).

Volume 9, Number 9, September 1998

Real-time DRC in Expert Layout Editor

INSIDE
Recursive Cutting of Rectangular Partitions for

 VLSI Floorplanning . 6

Calendar of Events . 9

Hints, Tips, and Solutions . 10

Continued on page 2....

Figure 1. Layout editor and background DRC communication

Connecting TCAD To Tapeout A Journal for CAD/CAE Engineers

It is obvious that DRC system built on these principles
will not necessary report all DRC violations immediately
after they are introduced. But the time gap between an
erroneous edit and the error report can be negligibly
small provided the DRC engine is accurately implemented
and tuned within the whole system. The key is that care
should be taken to minimize the amount of information
processed by the background DRC without affecting
check accuracy (see “Minimizing system resource us-
age” section).

Separation of real-time DRC into an independent thread
also makes it possible to control its execution prior-
ity with respect to the priority of the layout editor. The
higher is the priority of DRC the shorter is its response
time. The lower is the priority of DRC the less notice-
able is its slowing influence on layout editor functions.
Another great advantage of a multithreaded architecture is
that on multiprocessor system the real-time DRC thread will
work on a separate processor. It will result in a substantial
increase of the performance of the background DRC as
well as the performance of the layout editor.

2.1.2 Database Synchronization
Although our real-time DRC works as a background
thread parallel to the layout editor thread, the former
is not completely independent from the latter. The most
obvious point of competition between these threads is
the moment when they try to access the common lay-
out database simultaneously. The execution of DRC on
some part of layout takes some period of time while
user is free to modify any part of layout at any moment.
Under this assumption it appears to be a reasonable
technique to make a separate copy of local part of lay-
out to be checked – the layout snapshot. After that the
background DRC is executed on that copy rather than
on original layout. In this case the problem of database
access synchronization will take place only at the mo-
ment of snapshot preparation and can be easily solved
by means of standard thread synchronization methods
provided by the operating system.

Although such technique of snapshot processing of layout
works well with batch mode fire-and-forget background
DRC, it is not free of drawbacks when used in real-time
background DRC. Suppose that user is making some
modifications in the part of layout which is being pro-
cessed by DRC at same time. It means that at any mo-
ment the snapshot taken for DRC may become out of
date. If it does, chances are that the results of this script
execution will be obsolete as well. To prevent real-time
DRC from generating obsolete results such, situations
should be detected. DRC execution stopped and modified
area scheduled for recheck. The same applies to check

requests waiting in the real-time DRC queue. Some of
them may become obsolete before they are processed
and should be excluded from the queue. This technique
of exclusion of obsolete check requests leads to substantial
increase in performance of real-time DRC.

2.1.3 Minimizing System Resource Usage
The amount of data handled by conventional DRC can
be very large and usually does not fit into the internal
memory requiring additional external storage space.
However, it makes sense to use only RAM for real-time
DRC in order to increase its performance thus reduc-
ing its response time. Of course, when real-time DRC
is implemented as background thread care should be
taken to prevent it from occupying too much system
memory because it always leads to the drop of overall
system performance. The simplest way is to set a limit for
the amount of memory allocated for real-time DRC needs
and cancel DRC script execution whenever the limit is
exceeded. The corresponding check request from the
real-time DRC queue is removed without processing.

Under assumption that the amount of memory back-
ground DRC thread can occupy is limited, the problem
of most effective utilization of that memory arises. An
effective method of optimization of real-time DRC re-
source usage is developed. It will be referred to as selec-
tive DRC script execution. When a designer is editing a
layout most of modifications he makes are localized in a
particular area and particular layer of the layout. Most
frequently used operations such as creation or dele-
tion of object or changing shape of object locally affect
contents of only one layer. Hence, to check whether the
result of such operation is violating any of DRC require-
ments it is sufficient to execute only those operations
of DRC script, which are related to the modified layer.
The problem of extraction of the sequence of the op-
erations to be executed is non-trivial because any check
operation can reference layers of the layout directly as
its operands as well as indirectly through a chain of
layer generation operations (boolean, resize etc.). The
informational dependency graph of script commands
can be used to solve this problem efficiently [2]. When
the sequence of DRC commands is determined, the set
of input layers for this sequence can be easily obtained.
Only layers from this set and their objects from area of
modification should be included in the layout snapshot
before executing the DRC script. In most cases such pre-
liminary analysis of the script allows faster checking of
the modified portion of layout because it reduces the
amount of layout data to be prepared for DRC processing
and decreases the number of commands to be executed.

 The Simulation Standard Page 2 September 1998

2.2 Using DRC Guard

2.2.1 Operations Recognized by DRC Guard
The background real-time DRC based on the principles
described above and called DRC Guard was recently
introduced into Silvaco’s Expert Layout Processor. Once
set up, DRC Guard watches all modifications which
are made to the layout and generates immediate visual
report of all detected errors. Internal DRC engine used
in DRC Guard is based on very efficient scan-line ap-
proach [1]. It allows DRC Guard to deliver check results
in true real-time. It is worth to mention that DRC Guard
supports all types of error report conventional DRC does
including polygon-shaped errors reported by check
operations with GT/GE comparison types (see “User
interface” section and Figure 5).

Setup of DRC Guard is very simple and includes ordinary
DRC script written in Savage DRC language (see Figure 2).
Not only check operations but also any command of the
language can be used in DRC Guard script.

Check requests are placed into DRC Guard queue af-
ter each application of any editing operation such as
Create Object, Delete Object, Modify Object, Stretch,
Move, Copy, Cut, Paste etc. Being built into hierarchi-
cal layout editor, DRC Guard is able to handle editing
operations not only when they are applied to polygons
but also when they are applied to instances of other
cells in current one. DRC Guard can also perform quick
DRC check of any rectangular area of layout by user’s
request (see Figure 6). DRC Guard also supports Undo
command. Moreover, DRC Guard produces correct
and useful results in Expert’s Edit-in-Place mode of
hierarchical editing.

2.2.2 Error Report on Hierarchical Layout
Since it is implemented in a hierarchical layout editor,
DRC Guard takes into account hierarchical structure of
layout when performing DRC checks and displaying
errors. The purpose of DRC Guard is real-time detection
of DRC violations caused by user’s modifications currently
made. It aims for finding and reporting of errors of this
kind only. If DRC Guard finds some errors that are un-
likely to be caused by user modifications, it does not
report them to avoid overloading of workspace with
irrelevant DRC error marks. To carry out DRC check of
entire layout or its particular part with full error report
designer can use batch-mode DRC or DRC in Area.

The problem of filtering out irrelevant errors becomes
more complicated when DRC is executed on hierarchical
layout, because in this case designer can work not only
with polygonal shapes but also with instances of other
cells. Incorrect placement of the instance may induce
DRC violations, which also have to be detected. DRC

Guard considers a DRC error as relevant and reports it
if the error meets certain conditions. More concretely,
when designer is working with cell C DRC Guard re-
ports all errors that would be dispatched to that cell C
in accordance with nearest common parent rule used in
hierarchical DRC [3]. To get all information necessary
for application of this rule DRC Guard makes use of hi-
erarchical information inheritance technique [3].

In simple words, in its search for DRC violations in current
cell C DRC Guard checks the following relations:

a) between polygons of cell C;
b) between direct and indirect instances of other cells in

cell C and polygons of cell C;

c) between different direct and indirect instances of
other cells in cell C.

It is very likely that the actual reason of DRC violation
detected by DRC Guard in cell C resides nowhere else
but in cell C [3].

2.2.3 DRC Guard in Edit-In-Place
When user is editing cell contents in the Edit-in-Place (EiP)
mode the situation is rather different from ordinary
editing mode. The nature of difference is that the cell is
edited in its particular placement – the instance – and
therefore it is surrounded by instance’s environment,
i.e. objects of its parent cell. At any moment user can
change edited cell by diving one level down via in-
stance of another cell as well as by climbing on level up.
Chain of instances used by the user to move between
levels of hierarchy is called the Edit-in-Place chain (EiP
chain). EiP chain begins in the topmost cell and ends in
the current edited cell. Any modification made on certain
level of hierarchy may induce DRC violation not only on
that level but also on any higher level up to the topmost

 September 1998 Page 3 The Simulation Standard

Figure 2. DRC Guard Setup is through a user defined options menu.

selected objects. Depending on distribution of selected
objects over the layout area, application of this operation
may result in local modification as well as in global one
affecting the entire layout. In case selected objects are
relatively far one from another, operation Move can pro-
duce DRC errors outside view area. It means that DRC
Guard will actually detect all errors but user probably
will not be able to see all error markers on the screen. In
such situations Error Locator could be very useful. Error
Locator consists of small display containing eight ar-
rows and central dot (see Figure 7). Each of eight arrows
represents particular direction (North, Northeast, East
etc.) and begins to blink if DRC Guard has detected
violation in corresponding area outside the screen.
When mouse cursor hovers over blinking arrow in Error
Locator, the amount of errors found in that invisible area
is displayed. The central dot provides the same informa-
tion for visible screen area. Clicking on any of the ar-
rows causes the layout to pan so that the nearest error in
corresponding direction moves to the center of view area.
This provides simple and convenient way of navigat-
ing DRC Guard errors.

A number of important additional steps were taken in
order to achieve further improvement of DRC Guard
performance, reliability and convenience. We only
mention some of them here. First, the DRC Guard setup

one. Moreover, before leaving modified cell user has to
choose the way of its integration into project structure.
The options are the following:

1. Explode instance – the instance of edited cell is re-
placed with its polygons in parent cell. DRC Guard
checks the area of the former instance in parent cell and
environments of all instances from EiP chain.

2. Save Instance as Separate Cell – DRC Guard checks
environments of all instances from EiP chain including
environment of edited instance in parent cell.

3. Change Edited Cell – DRC Guard checks environments of
all instances of this cell in all their parent cells up to the
topmost one (including instances from EiP chain).

Such behavior of DRC Guard in EiP mode may seem
rather complicated but it leads to effective detection of
all DRC violations caused by modifications made in EiP
mode. The large numbers of check requests that may be
generated after EiP modifications do not represent any
problem because DRC Guard is implemented as back-
ground thread.

2.2.4 User interface
All DRC errors detected by DRC Guard are immediately
displayed on the screen in form of blinking markers. The
markers can have different shape depending on type of
particular violation. For instance, distance violations are
displayed in form of two-headed arrows and intersec-
tions are marked by circles. When mouse cursor hovers
above particular error mark the label containing in-
formation about this error is displayed. The information
includes type of violation and DRC rule that is violated
(see Figures 3, 4, 5).

Another component which makes DRC Guard’s user in-
terface more convenient is the Error Locator. Although
the main purpose of DRC Guard is to check correctness
of local layout modifications, it can easily handle any
non-local editing operation. Note that such operations as,
for instance, Move can change location of all currently

 The Simulation Standard Page 4 September 1998

Figure 3. Intersection marker (Intersection check)

Figure 5. Maximum distance violation markers (OutDistance GE
check).

Figure 4. Minimum distance violation markers (InDistance LT
check).

dialog box offers three ways to specify the script: manual
typing, semi-automatic command generation by means
of dialog boxes, loading from file. Second, the DRC
Guard script is analyzed, compiled and optimized in
special way at setup stage to reduce the initialization
time of processing of each check request. Third, DRC
Guard tracks the location of user’s working area on the
layout and processes in first turn check requests that are
closer to that area than others. Fourth, the DRC Guard
thread is carefully isolated from the layout editor thread
so that accidental crash of DRC Guard doesn’t result in
crash of the entire layout editor and data loss.

3. Conclusion

The real-time DRC the Expert Layout Processor is evolv-
ing very rapidly in direction of introducing new user
interface features, new types of DRC commands and
speeding up overall DRC performance. In its current state
DRC Guard is convenient and powerful component of
the layout editor, which improves speed and quality of
custom design of integrated circuits.

References
[1] V. Feinberg. Geometrical problems of VLSI computer graphics,

Radio i Sviaz, Moscow, 1987.

[2] Application of Scan Line Methodology to Perform Metric Opera-
tions in DRC. Simulation Standard. Volume 8, Number 12, Decem-
ber 1997, pp. 7--9.

[3] Savage Enhanced with Recognition and Reporting of Hierarchical
Structure of Errors. Simulation Standard. Volume 9, Number 3,
March 1998, pp. 1-4.

 September 1998 Page 5 The Simulation Standard

Figure 6. Check Area function of DRC Guard.

Figure 7. Error Locator.

Rectangular partitionings form a mathematical base for
many modern approaches to automation of VLSI design
[1-3]. In particular, popular methodologies of hierarchi-
cal placement (by cell grouping / merging) as well as
procedures of global routing and layout compression
deal with partitions that can be hierarchically subdi-
vided into components of bounded complexity.

The article shows that some tight placements cannot be
generated by any pairwise merging procedure in the
class of isotetically convex blocks.

Isotetically convex blocks (here called blocks, for simplicity)
are well described in [4,5]. A block P is a closed polygon
whose boundary consists of line segments parallel to
coordinate axes, and every horizontal or vertical segment
connecting any two points of the polygon P belongs to
P. Rank r of block P is the minimal number of rectangles
R1, R2, ..., Rr which do not intersect block P and complete
it to rectangle. In other words:

P ∪ (∪ Ri, for i=1,2,...,r) is rectangle,
Ri ∩ Rj = ∅ for i,j=1,2,...,r, i != j.
Ri ∩ R = ∅ for i=1,2,...,r.

This definition of rank is equivalent to one introduced in
[5]. Rank r of block P and number k of block vertices are
related by equation

k = 2r + 4.

Figure 1 shows all possible blocks of rank 0, rank 1, and
three blocks of rank 2 (excluding ones made by symmetry
transformations).

Let us denote the interior of set A by int(A) and boundary
of A by fr(A). A set of rectangles

R = {Ri}, i=1,2,...,n is partition of block P if
1. int(Ri) ∩ int(Rj) = ∅, i != j, i,j=1,2,...,n
2. ∪{Ri, i=1,2,...,n} = P.

There is an evident relation between the structure of
block and its partition. So we will use same letter P to

denote both the block itself and it partition. Rectangles
Ri are called atoms of the partition. The rank of partition
is the rank of the partitioned block.

Articles [6-7] propose an approach to find the “best”
placement of isotetic blocks based on the sequence of
their pairwise merging. This article is intended to show
an existence of placements which cannot be constructed
by any sequence of pairwise merge operations over iso-
tetically convex blocks of limited rank.

Let us introduce the following notations:

- V is set of vertices of P atoms;
- F is aggregate of atom boundaries:
 F = ∪ {fr(Ri), i=1,2,...n};
- L is partition of F:
 L = {S=[V1,V2] | (S ∩ V) = {V1,V2}}.

Now we can introduce the notion of cutting. An ordered
sequence C=(S1,S2,...,St) of segments of partition P cuts
partition P if:

 - Si ∈ L, i=1,2,...t;
 - (Si ∩ Sj) = Vij, Vij ∈ V if
 and only if i=j+1, or j=i+1; i,j=1,2,...t;
 - (Si ∩ Sj) = 0 if and only if
 i != j+1 and j != i+1, i,j = 1,2,...,t;
 - (C∩ fr(B)) = (Vb, Ve}, where
 Vb = (S1 ∩ fr(B)),
 Ve = (St ∩ fr(B), Vb,Ve ∈ V.

In other words, cutting is a simple path consisting of
segments of L such that it first and last points belong to
boundary of block P. C is “through” cutting if Vb and Ve
belong parallel segments of boundary of P. Otherwise
cutting is called as “sidelong”.

Every cutting C splits the partition P into non-empty
subsets P1 and P2. Herein we will consider only cuttings
which intersections with any horizontal or vertical line are
connected. In this case ∪(P1) and ∪(P2) are blocks.

 The Simulation Standard Page 6 September 1998

Recursive Cutting of Rectangular
Partitions for VLSI Floorplanning

Figure 1. Simplest blocks of bounded rank.

Cutting C2 intersects cutting C1, if C1 cuts P into
partitions P1 and P2, and C2 is cutting either P1 or P2,
and just one of end points of C2 belongs to C1.

Let us define the direction of cutting:

 1, if sequences of X and Y coordinates
of
dir(C) = vertices are both monotonous;
 0, otherwise;

We will say that block (partition) P can be recursively
cut into blocks of rank r if partition P contains cutting
which splits it into non-empty partitions P1 and P2,
ranks of P1 and P2 do not exceed r, and both blocks P1
and P2 also can be recursively cut into blocks of rank r.
It is supposed that a single atom can be cut into blocks
of any rank. Figure 2 shows three first steps of cutting
rectangle onto blocks of rank 2.

A set of all partitions recursively cut only onto blocks of
rank >= r is denoted via P**r.

Theorem. The set P**r is not empty for any positive inte-
ger r. In other words, for any positive integer r there ex-
ists partition which cannot be cut onto blocks of rank r.

To prove the theorem, we will show how to construct
an example partition P of square which belongs to P**r
for every pre-defined natural r. The construction will be
made on 2-dimensional regular integer grid.

Partition P1 from P**1 can be pointed out directly. It is
the first “snail” drawn on Figure 3. Any through cutting
splits it into blocks of rank 1. Sidelong cutting splits the
“snail” into blocks of ranks 0 and 1. So one-dimensional
“snail” belongs to P**1.

Partition Pr from P**r can be constructed as a square
containing r rows and r columns. Cell Kij located at
the intersection of row i and column j, i+j=0(mod2),
i,j = 1,2,...r, contains “snail” P1. Cell Kij, i+j=1(mod2),
i,j=1,2,...r, contains partition ~P1 which is mirroring of
P1 with respect to horizontal or vertical axis. Figure 3.
shows example partitions P1, P2, P3 and the structure of
cells for example partition P3.

Partition Pr inherits main property of partition P1.
Namely, a part of any cutting bounded by bottom (up-
per) side of cell Kij and bottom (upper) side of source
square contains i-1 (r-i) steps. If this part is bounded by
cell side and bottom (upper) side of the source square,
then it contains i (r-i+1) steps.

Now we are ready to show, that any sequence
C^ =(C1,C2,...,Cq) of cuttings Pr onto atoms will create
blocks of rank >= r. Blocks created after every cutting
from C^ can be considered as central (ones contain
symmetry center of source square) and peripheral
blocks. Peripheral blocks are out of our interest. We will
estimate ranks of central blocks. So cuttings peripheral
blocks can be instantly removed out of C ,̂ and, after
this operation, C^ can be considered as sequence of
cutting details out of central point.

Pr consists of r rows and r columns. As it was noted, ev-
ery through cutting contains r steps. It is true, because
maximal available length of every segment in Pr is 3
units and every cutting started and finished on opposite
sides of the initial rectangle contains r steps and, conse-
quently, it creates blocks of rank r. So, let us assume C^
does not contain through cuttings.

 September 1998 Page 7 The Simulation Standard

Figure 2. Recursive cutting onto blocks of rank 2.

Figure 3. Based “snail” and generated partitions Pr.

 September 1998 Page 9 The Simulation Standard

The last assumption means that C^ contains at least one
sidelong cutting for the original square and one addi-
tional cutting which intersects the first one. Otherwise
it would be impossible to cut out central atom of source
partition. Let denote this additional cutting by Cp:

 p = min{k | (Ck ∩ Ck)̂ != ∅}, where Ck^ = ∪

{Cj, j=1,2,...,k-1}.

As it is noted in [4] , after C1,C2...,Cp-1 cuttings
the central block is bounded by at most 4 stairways.
Its general view is shown at Figure 4. Segments F1=(B
1,A2),...,F4=(B4,A1) are parts of boundary of the initial
square. So, without loosing the correctness, we can as-
sume that first p-1 cuttings in C^ can be replaced by 4
ones: C1’, C2’, C3’, C4’, where Cj’=(Aj,...,Bj), j=1,...,4.

Now let us consider structure of blocks being created af-
ter all possible configurations of cutting Cp. Let Ap and
Bp be its first and last vertices, Ap ∈ C1’, Pp1 and Pp2 are
central and peripheral blocks which are cut out by Cp.
Taking into account the symmetry of configuration, we
can consider only the following 6 different cuttings:

1. dir(Cp) = dir(C1’), Bp ∈ F1;

2. dir(Cp) = dir(C1’), Bp ∈ Ck’, k=2,3,4;

3. dir(Cp) != dir(C1’), Bp ∈ C2’;

4. dir(Cp) = dir(C1’), Bp ∈ F2;

5. dir(Cp) != dir(C1’), Bp ∈ F2;

6. dir(Cp) != dir(C1’), Bp ∈ C3’.

In the first case the block Pp1 is bounded by
(A1,...,Ap,...Bp). It is sidelong cutting. The structure of
the block Pp1 remains the same as shown at Figure 4.
We can assume it is built from the original square with

the help of cuttings (A1,...,Ap,...,Bp), C2’, C3’, C4’. If we
replace block Pp by block Pp1 and cuttings C1’ and Cp
in C^ by cutting (A1,...,Ap,...,Bp), then we can recur-
sively consider sequence C^ again without loosing of
correctness.

In the second case the block Pp1 is bounded either by
cutting (A1,...,Ap,...Bp) or cutting (B1,...Ap,...Bp). We can
reduce this configuration to configuration of the general
case again. With this goal let us repair the central block
Pp by gluing peripheral block split by C1’ and replacing
cuttings C1’ and Cp in C^ by boundary of just created Pp1.

The third case can be reduced to the second case by
re-orientations.

In accordance with assumption cutting cannot go
through a boundary of the central atom. So reductions
made during consideration of first three cases are correct
and we will meet in C^ cutting made by one of rest cases.

 The Simulation Standard Page 8 September 1998

Figure 5. Case 5 of cutting.Figure 4. General structure of isotetically convex block.

Figure 6. Case 6 of cutting.

 September 1998 Page 9 The Simulation Standard

In the fourth case the block Pp1 will be bounded by
(A1,...,Ap,...,Bp). It is through cutting.

Now we consider case 5. Illustrations for it is shown at
Figure 5. Let Ap ∈ cell Klm. All available intersections
of cutting C1’ and cutting Cp inside Klm are shown at
Fig 7. Boundaries of the cell are drawn by thin lines.
Parts of C1’ and Cp bounded by l-th row are drawn by
thick lines. Let us denote the contribution of the l-th row
into the rank of block Pp1 by Sl. It can be easily seen that
Sl = 1 (for intersections 1,3,5,6,7,9,10,11,12) or Sl = 2 (for
intersections 2,4,8). Now we can estimate the number
of steps of the left boundary of block Pp1: (l-1) + Sl + r-l)
>= r.

The last case is illustrated at Figure 6. Let us assume
that Ap ∈ Klm, Bp ∈ Kkn. Let us denote contributions
of rows l and k into rank of the block Pp1 by Sl, Sk, and
contributions of columns m and n into rank of the block
Pp2 by Sm and Sn. From the properties of the initial
“snail” it follows that:

Sl, Sm, Sk, Sn >= 1.

the following conditions are necessary for Pr to be re-
cursively cut into blocks of rank < r:

 (l - 1) + Sl + (k - l) + Sk + (r - n) < r;

 (m - 1) + Sm + (n - m) + Sn + (r - k) < r.

Incompatibility of these conditions shows that there is
no way to build sequence of cutting in class of isotetic
blocks with apriory bounded number of vertices. It
finishes the proof.

The author wishes to express his gratitude to N.Metelsky
for formulation of the problem and kindly advices.

Summary

There exist a partition of the square into rectangles
which cannot be synthesized by pairwise block merg-
ing procedure in the class of convex isotetic blocks with
apropriory bounded number of vertices.

References
[1] Busnyuk N.N., Sarvanov V.I. // Vesci AN BSSR.

[2] Busnyuk N.N., Graphs of partition of rectangle into rectangles.

Preprint (36(306)) of the Mathematical Institute, Belarussian

Academy of Sciense, 1987.

[3] Klebanovich D.M., Metelskiy N.N. Grid of macro-blocks for chan-

nel model of VLSI. Preprint (6(316)) of the Mathematical Institute,

Belarussian Academy of Sciense, 1988.

[4] Wood D. // Computational geometry, Toussaint G.T. (editor). North

Holland): Elsevier Science Publishers, 1985, P.431-459.

[5] Metelskiy N.N., Krikun V.S. Isotetic boundaries of limited rank,

type and kind. Preprint (10(410)) of the Mathematical Institute,

Belarussian Academy of Sciense, 1990.

[6] Azarenok A.S., Klebanovich D.M., Krikun V.S. and others. Auto-

mation of VLSI design. Method of hierarchical generation VLSI

layout on the base of fixed non-standard blocks. Preprint (16(316))

of the Mathematical Institute, Belarussian Academy of Sciense,

1990.

[7] Metelskiy N.N., Krikun V.S. The method of hierarchical place-

ment of isotetic blocks. Preprint (27(427)) of the Mathematical

Institute, Belarussian Academy of Sciense, 1990.

Figure 7. All possible intersections of cutting inside cell.

 The Simulation Standard Page 10 September 1998 September 1998 Page 11 The Simulation Standard

Calendar of Events

1
2 SISPAD - Belgium
3 SISPAD - Belgium
4 SISPAD - Belgium
5
6
7 ESSDERC ‘98 - France
8 ESSDERC ‘98 - France
9 ESSDERC ‘98 - France
10 ESSDERC ‘98 - France
11 ESSDERC ‘98 - France
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 BCTM Conference
28 BCTM Conference
29 BCTM Conference
30

September
1
2
3
4
5 SOI Conference - Florida
6 SOI Conference - Florida
7 SOI Conference - Florida
8 SOI Conference - Florida
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

October B u l l e t i n B o a r d

The Simulation Standard, circulation 17,000 Vol. 9, No. 9, September 1998 is copyrighted by Silvaco International. If you, or someone you know wants a subscription
to this free publication, please call (408) 567-1000 (USA), (44) (1483) 401-800 (UK), (81)(45) 341-7220 (Japan), or your nearest Silvaco distributor.

Simulation Standard, TCAD Driven CAD, Virtual Wafer Fab, Analog Alliance, Legacy, ATHENA, ATLAS, FastATLAS, ODIN, VYPER, CRUSADE, RESILIENCE,
DISCOVERY, CELEBRITY, Manufacturing Tools, Automation Tools, Interactive Tools, TonyPlot, DeckBuild, DevEdit, Interpreter, ATHENA Interpreter, ATLAS
Interpreter, Circuit Optimizer, MaskViews, PSTATS, SSuprem3, SSuprem4, Elite, Optolith, Flash, Silicides, SPDB, CMP, MC Deposit, MC Implant, Process
Adaptive Meshing, S-Pisces, Blaze, Device 3D, Thermal 3D, Interconnect 3D, Blaze3D, Giga3D, MixedMode3D, TFT3D, Luminous3D, TFT, Luminous, Giga,
MixedMode, ESD, Laser, Orchid, Orchid3D, SiC, FastBlaze, FastMixedMode, FastGiga, FastNoise, MOCASIM, UTMOST, UTMOST II, UTMOST III, UTMOST IV,
PROMOST, SPAYN, SmartSpice, MixSim, Twister, FastSpice, SmartLib, SDDL, EXACT, CLEVER, STELLAR, HIPEX, Scholar, SIREN, ESCORT, STARLET, Expert,
Savage, Scout, Dragon, Maverick, Guardian and Envoy are trademarks of Silvaco International.

For more information on any of our workshops, please check our web site at http://www.silvaco.com

NT-based CAD Design Tools
Exhibited at ICCAD

Silvaco will be exhibiting the latest
developements in the PC-based NT Design
Framework CELEBRITY at the ICCAD
Conference from 8th-12th November in San Jose,
CA. New features of the layout editor Expert
including the DRC On-Guard feature described
in this issue will be presented.

Korean University Standardize
on Expert

Over 60 Korean Universites have decided to
standardize teaching of students in layout and
DRC techniques using Expert and Savage. This
effort is organized and supervised by KAIST, a
leading science institute. This confirms the leading
capabilities of Silvaco CAD products and paves
the way for the future of Silvaco tools in the
Korean market.

CAD Division Moves to New Building

Silvaco’s CAD Division has moved into their
newly refurbished ultra modern building. The CAD
building is the fifth Silvaco building at the Santa
Clara site. The CAD team was recently bolstered
by 6 new development engineers and this dedicated
facility gives room for rapid expansion in the
coming months.

 The Simulation Standard Page 10 September 1998 September 1998 Page 11 The Simulation Standard

Hints, Tips and Solutions

 Mikalai Karneyenka, Applications and Support Engineer

Some questions from previous issues are repeated here
since continued enhancements are introduced in Expert
to improve designer’s productivity.

Q: I run DRC, find one-two violations, correct them,
then I re-run DRC to check whether my corrections
worked. However re-running on the whole design is
time-consuming. How can I run DRC over a piece of
the layout, in the vicinity of the introduced changes?

Recent release of Expert contain two important features
that avoid multiple batch DRC reruns for the whole design.

• “DRC in Area” command allows you to run DRC
script to be run it the selected rectangular area of the
layout.

• “DRC Guard” allows monitoring of design rule viola-
tions on the fly while editing the design.

Please read the release notes for Expert v. 156 for
details. (All release notes are accumulated in the file
relnotes.txt).

Q1: When I plot my design on a laser printer some re-
gions are not plotted at all.

These dot patterns may be either regular or diffuse ones.
Stipple mode of filling also uses bit patterns for filling.
When plotter’s color dot patterns and stipple patterns in-
teract, the results can be totally unpredictable. Therefore
color matching has chance to work correctly for solid-
filled and wireframe shapes only.

Expert provides two means to alleviate these problems:

- plotting style setup, see Figure 1;

- color libraries.

Plotting style setup, among other possibilities, allows
you to assign filling modes and colors for layers different
from the ones used on screen. In particular, in trouble-
some situations is is possible to replace stipple filling by
hatching. Hatching is filling by “wireframe” lines rather
than by dot patterns, therefore it does not interfere with
color matching tricks. However this advantage is linked
with a drawback: there are six possible types of hatching,
see Figure 1.

Color libraries allow you to define “named” colors. This
allows you to predefine a set of “good” colors for further
use in setups, see Figure 2.

Q2. Stipple patterns on screen
and on plot look differently.

A: In both cases the reasons are
the same. Unfortunately, color
capabilities of screen and plot-
ting devices often do not match.
In particular, some nonsaturat-
ed colors clearly visible on the
screen are mapped into white
color on the plot.

One more problem arises if you
try to plot a layout drawn in
stipple mode of filling. When
preparing data for plotting the
software tries to match RGB
values of colors from layout
to the available set of plotter
colors. To do so, plotters use
dot patterns of primary colors.

Figure 1. Style Setup.

 The Simulation Standard Page 12 September 1998

Call for Questions
If you have hints, tips, solutions or questions to contribute, please

contact our Applications and Support Department

 Phone: (408) 567-1000 Fax: (408) 496-6080

 e-mail: support@silvaco.com

Hints, Tips and Solutions Archive
Check our our Web Page to see more details of this example plus an

archive of previous Hints, Tips, and Solutions

www.silvaco.com

Figure 2. Color Setup.

Moreover, color libraries for plotter and
for screen may contain colors with the
same name, but with different numeric
RGB values, so that the named color on
screen will look exactly the same as the
color with the same name for printer/
plotter. Such separate color definitions
may be prepared for all types of plot-
ters you have.

Of course, such kind of color/style
setup requires some tedious tuning,
including trial printouts. But please
remember, color library tuning must be
performed only once.

Q: Expert’s tool bars occupy too much
screen space. I would like to have more space for layout.

In Expert the whole screen may be used for editing in
the following way:

• using menu Setup>>Customize assign shortcuts to
most frequently used commands and/or add them
into the custom menu (the one appearing if you de-
press right mouse button inside design area).

• remove all unnecessary toolbars;

• assign shortcuts to show/hide necessary toolbars;
(suppose you assign key “L” to the Layer bar)

• holding the CTRL key, drag the necessary toolbars
so that will not dock to the boundary of Expert’s
window.

• then if you press “L” several times, you will see that
the layer bar shows and hides, while the layout oc-
cupies the whole screen.

Q: How can I report long parallel interconnect seg-
ments that run too close to each other?

A: An example check is as follows:

OutDistance:

layer1=m1, layer2=m2, type=LT, value=0.25um,
options=(S1,P,O,L=GE 6um,L1=GE 5um,L2=GE 4um);

Actually, it was generated through the user interface of
the DRC script panel. Click “Check” at DRC panel, then
select a basic operation, then click “Options” button.

The following options were selected at the “Options”
panel:

- parallel

- with projections

- length of segments

- length of errors 1

- length of errors 2

- report error subsegments.

Users should try different combinations of these options
(and their opposites) and choose what kind of check is
required.

A more advanced check, similar to the PLENGTH com-
mand, is under development.

Join the Winning Team!

To get a demo and product description contact or visit a Silvaco office near you:

 ●	Santa Clara ●	Guildford ●	Tokyo
 ●	Phoenix ●	Grenoble ●	Seoul
 ●	Austin ●	Munich ●	Hsinchu
 ●	Boston

Standardize your process/device
and CAD design using Silvaco’s

“TCAD Driven CAD™”

Contacts:

Silvaco Japan
jpsales@silvaco.com

Silvaco Korea
krsales@silvaco.com

Silvaco Taiwan
twsales@silvaco.com

Silvaco Singapore
sgsales@silvaco.com

Silvaco UK
uksales@silvaco.com

Silvaco France
frsales@silvaco.com

Silvaco Germany
desales@silvaco.com

USA Headquarters:

Silvaco International
4701 Patrick Henry Drive, Bldg. 2
Santa Clara, CA 95054 USA

Phone: 408-567-1000
Fax: 408-496-6080

sales@silvaco.com
www.silvaco.com

Products Licensed through Silvaco or e*ECAD

