FastATLAS
An Ultra-Fast Physical MESFET and HEMT Simulator

Introduction

By designing specifically for MESFETs and HEMTs Silvaco has optimized device simulation algorithms to produce a new and highly efficient simulation framework to be released as FastATLAS. Simulations with FastATLAS are typically 1000 to 10000 times faster than ATLAS allowing truly interactive TCAD. FastATLAS includes all the relevant physical models currently available within the ATLAS framework, maintaining simulation accuracy while delivering unprecedented speed.

FastATLAS and ATLAS were both used to simulate a 0.5 micron gate length recessed GaAs MESFET structure. The ATLAS structure contained 2700 nodes and averaged around 55 seconds per bias point on a SUN Sparc ULTRA workstation. The same structure was simulated with FastATLAS which automatically generated a mesh using over 15000 nodes yet reduced the simulation time to 7.5 milliseconds per bias point, a speed increase by a factor of 7000!

FastATLAS Timings for typical analyses are given in Figure 1.

Figure 1. All simulations were on a 0.5µm gate length recessed MESFET. The DC-IV simulations were taken over the range -2<Vgs<0, 0.5 volt increments, 0<Vds<5, 0.1 volt increments. The Id/Vgs sweep was taken over the range -2<Vgs<0, 0.1 volt increment Vds = 0.1 volts. The RF simulations were taken at the bias point Vgs = 0, Vds = 2 volts, freq = 20 GHz, and the RF swept simulation was taken at Vgs = 0, Vds = 2 volts 1<freq<30 GHz, 0.5 GHz increment.

Figure 2. Small-signal RF simulation of a GaAs/AlGaAs/ GaAs HEMT biased at 0 volts VGS, 2 volts VDS. Frequency sweeps from 1 Ghz to 25 GHz in 1GHz intervals.

Table: FastATLAS Simulation Timings

<table>
<thead>
<tr>
<th>Type of Analysis</th>
<th>CPU Time on Sun SPARC 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge Control analysis</td>
<td>24 seconds</td>
</tr>
<tr>
<td>DC Id/Vds family (drift-diffusion, 119 points)</td>
<td>2.6 seconds</td>
</tr>
<tr>
<td>DC Id/Vds family (energy balance, 99 points)</td>
<td>1.4 seconds</td>
</tr>
<tr>
<td>DC Id/Vgs sweep (energy balance, 21 points)</td>
<td>2.5 seconds</td>
</tr>
<tr>
<td>RF rapid (energy balance, 33 points)</td>
<td>1.3 seconds</td>
</tr>
<tr>
<td>RF full-period (energy balance, 128 points)</td>
<td>2.5 seconds</td>
</tr>
<tr>
<td>RF swept - full period (energy balance, 7552 points)</td>
<td>59 seconds</td>
</tr>
</tbody>
</table>
FastATLAS Architecture

The complete suite of FastATLAS modules is illustrated in Figure 3. The core simulator incorporates the physical models present in ATLAS including complex effects such as energy-balance and velocity overshoot. These features are coupled with a comprehensive material parameter database, input parser, c-interpreter and several post-processing options including various two-port and equivalent circuit extraction algorithms. FastATLAS has been designed to be user friendly and includes several features to enable ease of use. One important development has been the inclusion of an automatic mesh generation algorithm, relieving the user from this arduous and time-consuming task. The speed of the simulation process enables FastATLAS to perform trial solutions using an exceptionally dense mesh, typically with only two Angstrom node spacing. The solutions are then analyzed and a non-uniform mesh generated that maintains solution accuracy and enables high simulation speed. A typical mesh generated by FastATLAS is shown in Figure 4, illustrating the clustering of nodes, especially at the drain edge of the gate. In addition the solution sequence has been automated. In FastATLAS it is not necessary to specify solution techniques since the simulation procedure automatically and robustly solves for all biases. Combining these features produce a flexible simulation tool able to rapidly characterize arbitrary FET structures.

Figure 3. Architecture of FastATLAS framework.

FastATLAS

- C-Interpreter
- Core Simulation
 - automatic mesh generator
 - automatic solution section
 - wide selection of physical models
- FastBlaze
 - DC IV extraction
 - Small-Signal RF extraction
- FastNoise
 - independence-field calculating coupled with local noise service calculation
- Post Processing
 - two port extraction
 - equivalent circuit extraction
 - noise parameter extraction
- FastGiga
 - lattice heat flow equation
- FastMixedMode
 - circuit embedded device simulation (large signal)

Figure 4. Mesh layout around the gate, automatically generated within FastATLAS. Typical mesh size at drain edge of gate 2.8 x 0.6nm.

Figure 5. Current - driven DC-IV simulation illustrating the efficient extraction algorithm, where samples are only taken in regions of change.
Module Description

FASTBlaze, is the simulator that solves DC single point and swept IV simulation and the small-signal time-domain RF single point and swept bias simulations. One of the benefits of an extremely fast simulation is that one can perform time-domain simulations. This is done within FastATLAS and forms the basis of the RF simulator. In the small-signal simulation sinusoid input signals are applied to the terminals and their effects monitored. The user can then select from time-domain or a variety of two-port output options.

FastGiga incorporates the lattice heat flow equations into FastBlaze accounting for thermal effects, particularly important in power applications. One new development is to include a comprehensive transport parameter database derived from an ensemble Monte Carlo simulation. The transport models implicitly include the effects of field, doping and importantly for FastGiga, lattice temperature.

FastNOISE is capable of extracting noise parameters for a simulated device. This simulation incorporates a variety of noise mechanisms and uses the impedance-field method to obtain the terminal characteristics. Again several post-processing options are available allowing FastNOISE to output the conventional noise parameters: F_{min}, R_n and Γ_{opt}.

FastMixedMode embeds any of the modules listed above within a circuit enabling the user to perform TCAD on complex systems of devices and passive elements. This feature leads to large-signal analysis which will include both time-domain and harmonic balance techniques.

Features

One method of the optimizations has been to modify the ATLAS code from a “voltage driven” format, where the terminal biases are applied, to a “mixed current/voltage driven” form, where the input (source) current and gate bias are specified and used to calculate the corresponding drain bias and gate current. This new approach allows FastATLAS to reduce simulation times by an order of magnitude. Unfortunately if a solu-

Figure 6. Carrier velocity as a function of electric field (V.m$^{-1}$) and doping density (m$^{-3}$). Generated using a 3 valley ensemble Monte Carlo model.

Figure 7. Conduction band profile generated by FastATLAS for a 1/2 micron gate MESFET biased at 2 volts V_{DS}.
3D Numerical Simulation of the Pseudo-MOS Transistor for SOI Film Characterization

D. Munteanu, S. Cristoloveanu and E. Guichard

1LPCS/ENSERG, 23 rue des Martyrs BP 257, F-38016 Grenoble Cedex 1, France
2Silvaco Data System Sarl, 8, av. de Vignate 38610 Gières France

Introduction

The electrical characterization of SOI wafers is a difficult task due to the thinness of the film and complexity of the stacked structure. This is why the electrical properties are, in general inferred from the analysis of test MOS device or integrated circuits. Described below is a simple technique that takes advantage of the specific configuration of SOI and has the potential of being nondestructive. The pseudo-MOS transistor, also called the point-contact transistor or Ψ-MOSFET, is the first transistor that does not require any lithography or technology at all.

The Ψ-MOSFET is based on the inverted MOS structure that is inherent in all SOI materials. Figure 1 shows that the bulk-Si substrate can act as a gate terminal and can be biased to induce a conduction channel at the upper interface of the buried oxide.

The 3D structure used for simulation of Ψ-MOSFET is shown in the diagram. The simulation at a specified drain bias is desired, this must be found using iteration on the drain current, somewhat reducing the gains in efficiency. However, importantly, if a DC-IV sweep is performed the simulator can be left in “current-driven” mode and no iteration is necessary. In fact an automatic DC-IV generation algorithm has been written that increases the efficiency of the whole simulation since it is able to take large steps in the linear regions of device operation and only refines the output in areas of change, in particular around the “knee” of the IV curve and at breakdown. The results can then be interpolated onto individual drain bias positions, with accuracy guaranteed by the tolerance entered into the generation algorithm. Typical results are displayed in Figure 5 illustrating the clustering around the knee and larger steps in the ohmic region of device operation and as the device goes into saturation. The interpolated results taken from this curve have less than 0.003% error compared with the full voltage-driven results and were completed in less than 4% of the time.

Transport options include conventional drift-diffusion and hydrodynamic energy balance, with a range of different mobility and energy relaxation models. An additional feature available in FastATLAS is the transport parameter database. A new set of models have been developed using three valley ensemble Monte Carlo simulation to derive the carrier mobility, velocity, effective mass and both the energy and momentum relaxation times as functions of electric field, doping and ambient lattice temperature. Figure 6 illustrates the variation of carrier velocity as a function of field and doping in GaAs where velocity overshoot and saturation are clearly visible. Further, due to the new automated solution process the simulation convergence is relatively independent of transport models. FastATLAS works within the VWF framework, and is interfaced to all SILVACO input and graphical analysis tools. Figure 7 displays the conduction band energy of a recessed GaAs MESFET biased at 2 volts Drain-Source, and volts on the gate.

Conclusion

FastATLAS is a new and highly efficient TCAD tool for arbitrary, non-planar MESFET and HEMT device simulation. New techniques allow automated mesh generation, bias step control and very high frequency analysis. Device optimization can be done using the most advanced physical model with almost no speed penalty. A 1000x to 10000x speed up over conventional device simulation allows results to be obtained in seconds.
The buried oxide plays the role of a gate oxide and the Si film represents the transistor body. To operate the Ψ-MOSFET in situ (without lithography and metallization), low-pressure probes are placed on the silicon film and form source and drain point contacts.

Despite the device simplicity and nonparallelism of current lines, very pure MOSFET-like characteristics are produced. As shown in Figure 2, the simulated output I_D-V_D is very similar to a classical MOSFET curve.

Positive or negative biases can be applied to the gate to form accumulation or inversion channels at the interface. For example a log I_D-V_G characteristic is shown for n-channel accumulation in Figure 3.

For all the reasons described above the Ψ-MOSFET stands as a unique method permitting a quick and complete evaluation of the electrical properties of SOI wafers prior to any device processing[1]. This article describes the use of 3-D numerical simulations which validate the method and show the optimum conditions for application and parameter extraction.

Structure Definition

The structure can be built either the internal syntax of ATLAS or DevEdit3D which allows interactive structure editing, structure specification and grid generation for 3D devices. The visualization of the structure is made with TonyPlot3D (Figure 4).

ATLAS is perfectly suited to this kind of simulation although it was developed for the simulation of fully processed devices. However special attention has to be paid the contact specification and especially to the determination of the work-function for the Schottky contact between the metal probe and the silicon film.

Simulation

ATLAS simulation calculates I_D-V_G and I_D-V_D characteristics for both inversion and accumulation channels in either n- or p-doped films (Figure 5). In addition, the simulations offer the distribution of the charge, potential (Figure 7) and electric field. The accuracy
of the simulations has been validated by comparison with systematic experimental data (example in Figure 6) and by a self-consistent procedure: standard parameter extraction from the simulated curves and coherence of the output parameters with those initially fed into the simulator (carrier mobility, doping, oxide charges).

These simulations deliver illuminating information on the influence of several key parameters (film and substrate doping, film and buried oxide thickness, Schottky contact depth, series resistances, interface roughness).

More complex experimental situations have also been reproduced successfully:

- In a narrow range of gate voltages, a depletion region forms underneath the buried oxide. The depletion capacitance apparently modifies the oxide capacitance and gives rise to a hump in the drain current and transconductance (dotted circle in Figure 5). This hump can be used to evaluate the substrate doping.

- In accumulation, the current flows not only at the interface but also in the film volume. The simulations allow to make distinction between these two components as a function of film doping and thickness.

A practical concern with the Ψ-MOSFET technique is the geometrical factor \(f_g \) which replaces the transistor aspect ratio, \(W/L \), and is not known a priori. This factor is estimated experimentally by the comparison between the Ψ-MOSFET and 4-point probe data [1]. Any uncertainty directly impacts on the extraction accuracy of the carrier mobility and threshold voltage.

3-D simulations do show the non-parallel current flow lines across the sample (Figure 4). We verified that, in samples large enough when compared to the probe interdistance, the geometrical factor is roughly \(f_g \approx 0.7 \) in full agreement with the experiment.

A typical problem which can be solved using 3-D simulations is the influence of the sample size and the proximity of the borders. The investigation was conducted by either shrinking the sample size or by placing the contacts closer...
to the edges. In both cases, the resulting distortion of the field distribution (Figure 8) is responsible for an apparent degradation of the transconductance (Figure 9), and hence extracted mobility.

On the other hand, when the probe interdistance becomes comparable with the contact area (Figure 10) the short-channel/large-contact effect causes an over-estimation of the carrier mobility.

In order for the SOI material quality not to be underestimated or over estimated it is therefore necessary to respect certain rules in term of probe inter-distance on sample size.

Conclusion

The 3D simulator Device3D has reliably modeled the Ψ-MOSFET structure. The simulations have uncovered a number of non-obvious features of Ψ-MOS transistor behavior. This work makes clear the conditions required for reliable operation of the Ψ-MOSFET for SOI substrate characterization.

References

ATLAS Simulation of SiC Devices Using Anisotropic Mobility Models

Introduction

There has recently been a great deal of interest and research into using wide band gap materials, such as silicon carbide, in high power, high temperature applications. The operation of these devices has been found to be significantly different from the similar devices made using silicon. These differences are not fully explained by changing the material properties to those of SiC. Recent work has shown that the Hall mobilities in SiC are different depending on the crystalline axis where conduction is taking place [1]. This “anisotropic” mobility could dramatically affect device simulation results, particularly in power devices where current flow may be fully two-dimensional.

ATLAS has been modified so that this anisotropic mobility behavior may be modeled accurately as part of the device simulation. All of the existing mobility models implemented in ATLAS support this feature and only require the user to specify the mobility parameters in the two crystallographic planes used within the simulation. ATLAS then automatically accounts for the change in mobility as the vector of current flow moves through 360 degrees.

To illustrate the effects that this model has on numerical simulation we have performed simulations on two 6H-SiC transistor structures - the trench gated MOS (UMOS) and the double implanted MOS (DIMOS) transistor [2] - with the standard physical material parameters suggested in [3]. The mobilities were defined for the planes <0001> and <1100> which resulted in a perpendicular to parallel mobility ratio of 5 as suggested by [4]. The plane <1100> contains the greater mobility values for both electrons and holes.

Simulation Results

Figure 1 shows the first structure to be simulated, the UMOS device. The Id-Vd characteristics of this device were simulated with both the standard isotropic and the anisotropic mobility models. The results of these simulations are shown in Figure 2. Two simulations were performed using the standard mobility model - firstly with the mobility coefficients for the plane <0001> and secondly with the mobility coefficients for the plane <1100>. As shown in the results the anisotropic mobility

Figure 1. Structure of the trench-gated MOS device (UMOS) for simulation in ATLAS.

Figure 2. Simulation results of the Id-Vd characteristics of the UMOS device using isotropic and anisotropic mobility models. The anisotropic mobility results can be matched with one set of appropriate isotropic mobility coefficients.
The TCAD Driven CAD Journal

The model has given a similar characteristic to the isotropic model with mobility parameters of the <0001> plane. This result can be understood intuitively from Figure 1 as the current path is almost entirely in the <0001> plane. Also, the MOS channel, to the left of the gate, itself lies in the <0001> plane. The only current flow along <1100> will be in the n+ source region where there is only minimal resistance. As a result the mobility changes little along the current flow path and can be simulated using an isotropic mobility model.

Figure 3 shows the second device under analysis, the DIMOS device. The Id-Vd characteristics of this device were once again obtained with both the standard isotropic and the anisotropic mobility models, and are shown in Figure 4. In this device three different curves are obtained. The two curves obtained from the isotropic mobility model, for planes <0001> and <1100>, are both different to that obtained using the anisotropic mobility model. This difference is a result of the current flowing partly in the <0001> plane and partly in the <1100> plane. The MOS channel lies in the plane <1100>, which is the high mobility plane, whilst the majority of the distance over which the current flows is in the <0001> plane. Therefore the on-resistance, which is controlled by the <0001> plane, will be quite high. However current saturation is controlled by the pinch-off region in the channel which lies in the <1100> plane. As a result the anisotropic model gives a higher on-resistance than the <1100> mobility but the saturation current will be close to that obtained for the <1100> plane but at a much higher drain voltage. The anisotropic model also results in a slightly different current flow path for the DIMOS device.

Figures 5 and 6 show the simulated current flowlines for the isotropic and anisotropic mobility models. The anisotropic model is shown to have a different current flow path. Firstly the current spreads out more in the n-region but is more dense around the corner of the p-region. This will affect both the series resistance and the self-heating in the device.

Conclusions

A new implementation of the mobility model into the semiconductor equations allows either isotropic or anisotropic mobility behavior to be modeled. The implementation fully supports all the mobility models that are currently included in ATLAS. Two examples have been demonstrated. For a UMOS device the anisotropic mobility model was shown to correctly match the isotropic model. In the second example, the DIMOS device, the

Figure 3. Structure of the double implanted MOS (DIMOS) device for simulation in ATLAS.

Figure 4. Simulation results showing the Id-Vd characteristics of the DIMOS device using both isotropic and anisotropic mobility models. The anisotropic results cannot be matched with just one set of isotropic mobility coefficients.
complex two-dimensional current flow pattern can not be accurately modeled with the isotropic mobility model and only an anisotropic mobility model will yield the correct I-V characteristics.

References

3D Simulation of Heterostructure Devices

Introduction
The three-dimensional silicon and GaAs device simulator Device3D has now been extended to allow simulation of heterostructure devices within the ATLAS framework. The new product Blaze3D includes the modeling of graded and abrupt heterojunction barriers which is critical to the simulation of important classes of devices such as HBTs and HEMTs. Two typical examples of the application of Blaze3D are presented here. Firstly, the collector avalanche breakdown of a SiGe base HBT is simulated. Secondly, a conventional GaAs-ALGaAs HEMT with a resistive T-gate is simulated in transient mode. The progression of a negative gate voltage pulse along the length of the gate is accompanied by the progressive turn-off of the channel conduction through the 2DEG in the GaAs.

Creation of Virtual Device Structures
3-dimensional structures may be created using ATLAS command syntax or more easily by using DevEdit3D, the 3D extension to the powerful ‘De-
Selection of Models

All the mobility models available in Blaze are incorporated in Blaze3D: concentration, transverse field and parallel field dependence (negative differential mobility or simple velocity saturation). Blaze3D also supports multiple recombination mechanisms (Auger, radiative and concentration dependent Shockley Read Hall) and band gap narrowing for simulation of bipolar transistors. Single event upset may be modeled as in Device3D and impact ionization may also be modeled to investigate breakdown limitations. Blaze3D carries the same comprehensive materials library as Blaze. This includes parameter defaults for more than 40 compound semiconductors. Arbitrary user-defined materials and properties are also supported. The SiGe HBT was simulated using the AUGE, CONSRH, FLDMOB, CONMOB, BGN and IMPACT models and biased into avalanche breakdown in the collector region under zero gate bias. For the simulation of the 3D HEMT, FLDMOB and CONMOB mobility models were invoked and single carrier mode was selected to reduce run time. The band offsets were set by defining the electron affinity of each layer. A -0.6V, 2pS gate voltage transient was applied to one end of the gate and the 2DEG channel observed to progressively turn off with time.

Figure 3. Isosurfaces of impact ionization rate reveal that the most intense avalanche multiplication is along the centre of the emitter stripe and in the n-doped SiGe collector region.
Simulation Results

Results of device simulation are generally in the form of terminal current-voltage characteristics and 3D structure files. The latter may be viewed and analyzed using TonyPlot3D which provides advanced imaging and dissection capabilities. Taking the example of the HBT breakdown, the region of avalanche multiplication may be imaged as isosurfaces of impact generation rate (Figure 3). A 2D cut plane exported to Tonyplot (Figure 4a) gives a different perspective and a 1D cut line allows a graph to be drawn (Figure 4c). Figure 4b shows the breakdown characteristic. It may be observed in these plots that the avalanche breakdown in this HBT occurs primarily in the n-SiGe collector ‘extension’ region. The purpose of this layer is to avoid a potential barrier at the SiGe base - Si collector interface [1].

The response of the T-gated HEMT to a gate bias transient can be observed in Figure 5 which shows a 2D cut plane taken along the principal axis of the T-gate. The contours in the gate region represent the voltage which is clearly varying under the dynamic biasing as the gate is forced more negative (on the right side). The contours in the GaAs show the local electron channel current in the 2DEG and AlGaAs is consistent with the gate potential, being lower on the right hand side where the gate potential is more negative.

Conclusion

Blaze3D extends ATLAS simulation capability to include arbitrary three-dimensional heterostructure devices. Combined with DevEdit3D and TonyPlot3D, accurate structure definition and results analysis are possible for 3D device technology development. These features are demonstrated for typical examples of HBT and HEMT.

Reference

NOTE: Full color graphics of the 3D heterostructures may be viewed at: www.silvaco.com
Calendar of Events

<table>
<thead>
<tr>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Bulletin Board

Visit Silvaco at IEDM ’97
Silvaco will be demonstrating the latest advances in our Virtual Wafer Fab TCAD simulation products at the conference which will be held at the Washington D.C. Hilton on December 7-10, 1997. Silvaco’s demo suite will be located in Suite C325 on the Lobby floor. All conference participants are welcome to come and see the exciting new tools available from Silvaco including: FastAtlas - an extremely fast FET device simulator, Blaze3D - a 3D device simulator for compound materials, and CLEVER - highly accurate cell level LPE based on Silvaco’s advanced 3D process simulation capabilities. All participants are encouraged to take advantage of this opportunity to come and see how the only significant remaining commercial TCAD vendor can help meet your technology development needs.

Silvaco at MRS Fall Meeting!
Dr. Misha Temkin will present a paper showing the latest enhancements to ATHENA entitled “Computationally Efficient Model for 2D Ion Implantation Simulation” at the “Semiconductor Process and Device Performance Modeling Symposium” during Material Research Society 1997 Fall Meeting, December 1st - 5th in Boston, Ma.

Taiwan Workshops
Our new Hsinchu office is now open and will start providing regular workshops for Taiwan customers. The first two workshops are titled: “Advanced diffusion models in ATHENA” for TCAD users, and “SmartSpice BSIM3v3 Capacitance Modeling and AC Parameters Extraction using UTMOST” for UTMOST users.
Hints, Tips and Solutions

Andy Strachan, Applications and Support Manager

Q: How is the coupling ratio between the floating gate and control gate of a Flash EEPROM modeled in ATLAS?

A: In EEPROM devices the floating gate is capacitively coupled to the control gate and the substrate. The exact ratio of the coupling is determined by the relative shape of the floating and control gate electrodes as well as the inter-gate layer thicknesses. For most structures full 3D simulations would be required to model the control and floating gate geometries correctly. Although ATLAS/Device3D can perform simulations of 3D Flash memory structures it is often more convenient to find a solution using 2D simulation.

By default, in 2D simulations the coupling capacitances between the floating gate and the control gate and other electrodes is determined only by the layer thicknesses and other 2D geometries. However ATLAS enables the user to specify an extra capacitance between a floating electrode and any other electrode in the device structure. Most commonly this is an extra capacitance between the floating gate and the control gate. This would be defined using the syntax:

```
CONTACT  NAME=FGATE  FLOATING
EL1.CAP=CGATE FG1.CAP=<value>
```

Users should note this capacitance is applied between electrode nodes. This differs from the usual lumped capacitance definition on the CONTACT statement which applies between the specified electrode and ground.

The effect of the extra capacitance is to give the correct coupling ratio seen in simple EEPROM simulations such as the threshold voltage evaluation shown in Figure 1. Generally the value of the external capacitor should be tuned to the threshold behavior before more complex simulations of programming, erasing or breakdown are done.

Capacitive coupling between the floating gate and other electrodes can also be modeled by additional syntax. The syntax ELx.CAP and FGx.CAP, where x=1 to 4, can be used to define up to four different electrode names and capacitors.

Q: How can EEPROM devices be simulated in a circuit environment using ATLAS/MixedMode?

A: Any type of EEPROM or non-volatile memory from ATLAS can be embedded in a SPICE circuit and simulated using MixedMode. The ATLAS device should be defined in the circuit netlist using syntax such as:

```
AEPR -1=FGATE 1=CGATE 2=DRAIN 0=SUBSTRATE 0=SOURCE \ WIDTH=<value> INFIL=<filename>
```

Note that the floating gate is assigned a negative node number. This allows ATLAS to store the change on the floating gate during MixedMode simulations.

In the numerical device parameter definition of the MixedMode input file the floating gate should still be defined as a floating electrode using the CONTACT statement. The coupling capacitances described above should also be defined using the CONTACT statement and the syntax referred to in the previous question. Users should not make any connection to the floating gate node in the SPICE circuit. This especially includes

Figure 1. Correct setting of the coupling ratio is required for accurate EEPROM threshold simulation.
capacitors between the floating gate and any node. This is due to the difference in definition of a floating node in SPICE and a floating gate in ATLAS.

Programming and Erasing simulations in a circuit environment can be performed using ATLAS/MixedMode. Figure 2 shows a Flash programming simulation where the EEPROM device is in series with a MOS transistor simulated in SPICE. To highlight MixedMode usage the comparison shows the effect of variations in the series MOSFET on the programming curve.

Q: How can ‘one-shot’ EEPROM programming be modeled with ATLAS?

A: ATLAS can model the one-shot programming by mirroring the test conditions used in measurements. In this test the control gate of Flash memory device is held at a high voltage. Then the drain is ramped up from zero to a voltage around breakdown.

During the VDS ramp, at around 2-3V hot electron gate current programs the floating gate causing a VTH shift. This causes the drain current to drop and hot electron current to fall off.

If a DC solution was used in ATLAS the results would be incorrect since the connection between injected gate current and floating gate charge is only possible if the timescale is known. Thus transient simulation should be used in ATLAS. The length of the transient needs to be matched to the ‘one-shot’ programming measurement setup.

However since the timescale of the drain voltage ramp is typically slow the device is in equilibrium at each time step. ATLAS includes a special numerical technique to deal with this situation defined by:

METHOD QUASISTATIC

This quasistatic method adjusts the error control within ATLAS to avoid excessively short timesteps. It is relevant for all other types of quasistatic transient simulations.

Although the simulation is run as a transient mode the final results are displayed as an I_D/V_DS curve (Figure 3). The curve clearly shows the on-set of programming and the final punchthrough.

Figure 2. EEPROM programming simulated in MixedMode. Variation in parameters of the series MOSFET is used to illustrate the effect of circuit variation.

Figure 3. ‘One-shot’ programming characteristic of a Flash Memory device is simulated by using quasi-static transient simulation in ATLAS.
Join the Winning Team!

Silvaco Wants You!

- SPICE Application Engineers
- Process and Device Application Engineers
- Software Developers

fax your resume to: 408-496-6080, or e-mail to: personnel@silvaco.com

Opportunities worldwide for apps engineers: Santa Clara, Phoenix, Austin, Boston, Tokyo, Guildford, Munich, Grenoble, Seoul, Hsinchu. Opportunities for developers at our California headquarters.

Silvaco Wants You!

4701 Patrick Henry Drive, Building 2
Santa Clara, CA 95054

Telephone: (408) 567-1000
Fax: (408) 496-6080
URL: http://www.silvaco.com