Silvaco TCAD Part I - Overview

ECE 543 Spring 2005

Silvaco TCAD Simulation Modules

Athena

2D Process Simulator

Atlas

- 1D/2D/3D Device Simulator
- "a modular and extensible framework for one, two and three dimensional semiconductor device simulation"

• SSuprem3

- 1D Process Simulator
- Mercury
 - "Fast" 2D Device Simulator
 - "provides general capabilities for numerical, physically-based, two-dimensional simulation of FETs"

Mocasim

 "Advanced three-valley Monte Carlo simulator designed to generate the transport parameters used in the physical device simulators"
TJR, Jr.

Silvaco TCAD General Comments

- Each module is designed to simulate a specific range of processes
- Learning the syntax of each module is similar to learning a programming language – but simple and intuitive (for the most part)
- <u>Very</u> extensive manuals available for Athena (438 p.), Atlas (two volumes;316 p. & 332 p.), Mercury (168 p.), Mocasim (112 p.), and Ssuprem3 (218 p.)

- A FAST universal 1D process simulator with simple device simulation extensions (programming syntax)
- Predicts process doping profiles without the need for experimental backup***
- Calculates layer thickness for device simulators
- Can also be used to calculate some electrical quantities
- Most important results
 - Layer thickness of materials that make up the semiconductor structure
 - Distribution of impurities
- Mainly used to generate impurity profile for transfer into ATHENA or ATLAS

- Process step capabilities
 - Inert ambient drive-in
 - Oxidation of silicon, poly-silicon, silicon nitride
 - Ion implantation
 - Epitaxial growth of silicon
 - Low temperature deposition or etching of various materials

- Can define up to ten different materials
- There are five default materials
 - Single crystal silicon
 - Polysilicon
 - Silicon dioxide
 - Silicon nitride
 - Aluminum

- Structures can be doped with up to ten impurities
 - Boron
 - Phosphorus
 - Arsenic
 - Antimony

Silvaco – TCAD Athena

- Comprehensive software tool for modeling semiconductor fabrication processes
- Provides techniques to perform efficient simulation analysis that substitutes for costly real world experimentation
- Combines high temperature process modeling such as impurity diffusion and oxidation, topography simulation, and lithography simulation

Silvaco – TCAD Athena Modules

ATHENA

This tool performs structure initialization and manipulation, and provides basic deposition and etch facilities

SSUPREM4

 This tool is used in the design, analysis, and optimization of silicon semiconductor structures. It simulates silicon processing steps such as ion implantation, diffusion and oxidation.

• ELITE

 This tool is a general purpose 2D topography simulator that accurately describes a wide range of deposition, etch and reflow processes used in modern IC technologies.

OPTOLITH

 This tool performs general optical lithography simulation including 2D aerial imaging, non-planar photoresist exposure, and post exposure bake and development.

• FLASH

 This tool is used in the design, analysis and optimization of compound semiconductor structures. It simulates implantation and diffusion in GaAs and other compound semiconductor materials, including SiGe.

Silvaco – TCAD Athena "Shortlist"

- ATHENA Features and Capabilities
 - Bake
 - CMP (Chemical Mechanical Polishing)
 - **Deposition**
 - Development
 - Diffusion
 - Epitaxy
 - Etch
 - Exposure
 - Implantation
 - Oxidation
 - Silicidaion

Silvaco – TCAD Atlas

- ATLAS is a physically-based two and three dimensional device simulator
- It predicts the electrical behavior of specified semiconductor structures and provides insight into the internal physical mechanisms associated with device operation.

Silvaco – TCAD Atlas

ATLAS provides a comprehensive set of physical models, including:

- DC, AC small-signal, and full timedependency.
- Drift-diffusion transport models.
- Energy balance and Hydrodynamic transport models.
- Lattice heating and heatsinks.
- Graded and abrupt heterojunctions.
- Optoelectronic interactions with general ray tracing.
- Amorphous and polycrystalline materials.
- General circuit environments.
- Stimulated emission and radiation

- Fermi-Dirac and Boltzmann statistics
- Advanced mobility models.
- Heavy doping effects.
- Full acceptor and donor trap dynamics
- Ohmic, Schottky, and insulating contacts.
- SRH, radiative, Auger, and surface recombination.
- Impact ionization (local and non-local).
- Floating gates.
- Band-to-band and Fowler-Nordheim tunneling.
- Hot carrier injection.
- Thermionic emission currents.

Silvaco – TCAD Mercury

Mercury provides a comprehensive set of physical models, including:

DC, AC small-signal, and full time-dependent analysis Quantum, Fermi-Dirac, and Boltzmann statistics Advanced energy balance transport models including Monte Carlo derived mobility, energy-relaxation, and potential energy relationships Abrupt heterojunctions Heavy doping effects Ohmic and Schottky contacts Breakdown effects including impact ionization Thermionic and tunneling gate currents General terminal circuit environments

Silvaco – TCAD Mercury Modules

- MERCURY
 - framework supplies general capabilities that are accessed by all the device simulation products.
- FASTBLAZE
 - simulates devices fabricated using arbitrary semiconductors (II-VI, III-V, and IV-IV materials) and heterojunction devices.
- FASTGIGA
 - adds the ability to perform non-isothermal calculations that include the effects of lattice heating and heat sinks.
- FASTMIXEDMODE
 - offers circuit simulation capabilities that employ numerical physically-based devices as well as compact analytical models.
- FASTNOISE
 - adds a physically-based noise simulator.

Silvaco TCAD Part II - Examples

ECE 543 Spring 2005

Silvaco – TCAD SSUPREM3 1D process simulator

- Define mesh density in INIT step!!!
- Oxidation Example
 - Dry (slow, better quality for FET gates)
 - Wet (fast, lower quality for masking)

Diffusion Example

- Pre-deposition step (specify conc. of impurity)
- Drive in step (extract final junction depth)
- Ion Implantation Example
 - Dose, energy, tilt

Silvaco – TCAD Athena 1D/2D process simulator

- Define mesh density/grid first!!!
- Oxidation Example
- Diffusion Example
 - Pre-deposition step (specify conc. of impurity)
 - Drive in step (extract final junction depth)
- Ion Implantation Example
 - Dose, energy
- Oxidation with etch and diffusion

Silvaco – TCAD Homework

- <u>Chapter 3</u>
 - See table 3.3 for sample
 - Problem 3.21 (compare to results of 3.8)
 - Problem 3.23 (compare to results of 3.6)
- Chapter 4
 - See p.94 and 95 for sample
 - Problem 4.20
 - Problem 4.21
- <u>Chapter 5</u>
 - Redo Example 5.3 with Silvaco

Silvaco – TCAD Homework

- Hint: Use STATEMENTS section of manuals for help
 - P. 57 in ssuprem3_um.pdf
 - P. 251 in athena_users.pdf
 - Also look at chapter 2 in this particular manual for a short Athena tutorial
 - this is optional, but if you go through this tutorial, you'll almost have your homework done!
- Specific info about manuals
 - Pcitools.pdf
 - Page 49 has details on EXTRACT command for ssuprem3 (Chapter 2 in this manual)
 - TonyPlot has built in help that you might want to investigate