
AccuCore –
SPICE Accurate Core Characterization with STA

Silvaco Japan Technology Seminar
Spring 2007 

AccuCore – SPICE Accurate Core Characterization with STA

What is AccuCore? Why would I use it?

 AccuCore performs automatic block SPICE characterization and Static
Timing Analysis

 Anyone who designs complex multi-million device ICs with various mixed
static AND DYNAMIC design styles implemented in the latest VDSM
technologies (90nm, 65nm and below) needs this product

2

  Adv. Static & Dynamic Designs
  Large Hier. or Flat RC designs
  Auto Partition / Function Extraction &

Vector Generation
  State-Dependent Timing .lib & TLF
  Auto False Path Removal

 Export to SPICE of Critical Paths
 Compressed Model Generation
 Integrated SmartSpice API
 Firebird DB - incremental
 Supports ALL SPICE models
 Supports third-party SPICE

AccuCore – SPICE Accurate Core Characterization with STA

Silvaco Cell and Core Characterization Flow

3

AccuCell
Timing
Power
Function

Timing

Timing
Power
Function

Functional
Extraction

Vector
Generation

Dynamic
Simulation

Model
Generation

Block/Core
Partitioning Characterization Static

Timing
Model

Generation

Model
Generation

Cell

Block/Core

AccuCore

AccuCore – SPICE Accurate Core Characterization with STA

AccuCore – High Performance Timing Engine

 Support multiple input and output
industry formats

 Incremental characterization with
firebird database

 Gate-level timing analysis - fast &
easy w/ support of ALL SPICE
models

 Fast Hierarchical Full Chip timing
analysis with automatic block level
timing model options

 Support both static & dynamic logic
and FULL .tcl automation scripting

4

AccuCore – SPICE Accurate Core Characterization with STA

AccuCore STA Full Chip Flow

5

Custom/IP Blocks

Verilog
Silvaco Library

DC’s

Top level
Verilog

Top level
DSPF Synthesized Blocks

Verilog
.lib
SDF

AccuCore
(Trans. Block

Characterization)

Persistent Design
Database

Timing
Models

AccuCore
STA

Config File
(I/Os, PVT, Clk Freq..
arrival & required
times, etc.)

Command File
(Checks, Constraints, etc.)

Memory Black Boxes

Timing Reports, Crit.
Path Spice Decks
Slack Reports, Timing
Windows Reports
Constraint Generation

AccuCell 1. Reads in “All paths
Models”

2. Performs Timing Checks
on block

3. Performs Critical Path
Analysis on block

4. Creates Spice decks for
Critical Paths

5. Creates “Compressed
Model” of block

AccuCore Static
Timing Analysis

AccuCore – SPICE Accurate Core Characterization with STA

AccuCore STA Timing Modeling

All-Paths Model
 A complete picture of the design

 Compressed Model (N-level)
 Combinatorial devices collapsed
 Debug path information
 Support delay and slope tables

 Black Model
 Debug path information
 Support delay and slope tables

 Interface Ring Model
  Leaves the interface logic intact

 Interface Compressed Model
  Leaves interface devices intact, collapse the rest of

combinatorial logic

 Block Constraint Generation
 To block boundary for ASIC blocks
 To individual pins for customs block

 Clock Skew Analysis

6

AccuCore – SPICE Accurate Core Characterization with STA

Description of the AccuCore Process

In the following 8 slides, after step 1, AccuCore processes the design
automatically. The first step is the ONLY manual user step (creation of
the .cfg file). The key part is partition control discussed in detail on the next
slide.

7

AccuCore – SPICE Accurate Core Characterization with STA

Step 1: Create .cfg with KEEP_SUBCKT, FIND_SUBCKT

8

In some cases you may want to force the AccuCore partitioning algorithm to preserve certain
circuit structures as a single partition. If the circuit structure resides within a space subckt (ie. a
.subckt…) then the KEEP_SUBCKT config command can be used

The syntax for KEEP_SUBCKT is:

KEEP_SUBCKT <subckt_name> <inputs> <outputs> <bidirs>\
<clocks> <optional_table_filename>

The FIND_SUBCKT config command is used in those cases where you are using a flat netlist (ie.
Extracted) as input and you desire to force AccuCore’s partitioning algorithm to preserve certain
Circuit structures as a single partition. To use this command you must provide AccuCore with a
Sample of the circuit structure in the form of a spice netlist.

The syntax for FIND_SUBCKT is:

FIND_SUBCKT <pattern_name> <pattern_spice_netlist> <powers> <grounds> \ <inputs>
<outputs> <bidirs> <clocks> <optional_table_filename>

Note: a table file is only necessary when a manual override is desired for the function or vectors

AccuCore – SPICE Accurate Core Characterization with STA

Step 2: Merge Parallel Devices/Propagate Clocks/Identify
Latches

9

  Strip invalid devices and flatten
  Transform coupling capacitors
  Trace resistor connectivity
  Add power and ground & process device types
  Assign clock attributes
  Merge parallel devices & RCs

  Node/driver static/dynamic conditions
  KEEP_SUBCKT & FIND_SUBCKT
  clock pins propagated
  find inverters
  gating logic
  latching nodes and devices

AccuCore – SPICE Accurate Core Characterization with STA

Step 3: Partition the netlist into Design Clusters (DCs)

10

 Design Clusters (DCs) are partitioned:
 By Channel Connected Components (CCCs) – a set of nodes and attached

transistors that are traced through Source-drain connections
 By merging tightly coupled connected regions or feedback loop topologies

 Muxes are considered tightly connected regions

AccuCore – SPICE Accurate Core Characterization with STA

Step 4: Measures Input Pin Caps for Primary Input DCs

11

AccuCore – SPICE Accurate Core Characterization with STA

Step 5: Extract the DC Function & Generate Optimized Value

12

  Silvaco uses a proprietary BDD based algorithm to determine the function of a given DC
  Silvaco also uses a proprietary algorithm to automatically generate minimum simulation

Vectors to characterize the DC
  False Paths are eliminated – Local (DC) false paths are removed if logically impossible

AccuCore – SPICE Accurate Core Characterization with STA

Step 6: Propagate Input Slopes and Actual “in-circuit”
Output Loads for the DC to be characterized

13

  Characterization requirements and slopes are pushed to the Design Cluster (DC)
  Actual “in-circuit” DC output device load instances are identified and transformed to remove sensitization

requirements to ready for dynamic simulation characterization
  If “folding” has been enabled to bypass simulation based characterization, the DC is tagged to derive its

characterization info by lookup table from a prior result stored in the database
  Determination of this is based on .cfg file settings of parameter tolerances provided by the user

AccuCore – SPICE Accurate Core Characterization with STA

Step 7: Characterize the DC using Dynamic Simulation and
Store Results

14

  For DC’s not “folded” characterization simulation decks are generated
  “Cell” delay propagation and transition rate characterization is performed first. setup & hold, and recovery &

removal are deferred and scheduled for later processing
  Link to SPICE simulator and pass the simulation decks. If SmartSpice in API mode - deck is passed directly via

memory and both I/O and parsing overhead are skipped and each “related” timing arc simulation for the DC is
parameter altered in a similar manner

  Results to AccuCore firebird database via the API - avoiding ALL file I/O and translation overhead
  Net result - significant performance gain over non-API and/or third-party external SPICE simulators

AccuCore – SPICE Accurate Core Characterization with STA

Step 8: Propagate Output Slopes to the input slopes of the
next DC to be characterized

15

AccuCore – SPICE Accurate Core Characterization with STA

Summary

 Accuracy
 Dynamic Simulation
 Propagation of Slopes Tables

throughout Design

 Easy to use - Setup, Maintenance
 Simple .tcl script-based config file
 Automatic function extraction
 Automatic Vector generation for

Dynamic Simulation runs
 No manual transistor direction setting
 Automatic false path removal

16

 Supports aggressive design
styles
 High performance designs -

dynamic logic

 Complex mixed level static timing
analysis tool built in
 Critical Paths, Sub-critical paths,

timing checks, Slack reports
 SPICE deck creation of Critical paths

(ready-to-run in SPICE simulations)
 Various types of Model generation for

hierarchical design and full-chip STA

Quicker timing convergence – Incremental characterization

Reduces Design Cycle
Improves Design Quality

