Spayn Detailed Product Description
What is Spayn?

- Data Management
- Parameter Analysis
- Core Parameters Identification
- Process Control
- Simulation interface
- Conclusions
What is Spayn? – Application Fields

• Spayn is a statistical analysis software package tailored for the semiconductor industry.

• It is applied for two main fields:

 • **Characterization:**
 • Spayn is the ideal statistical modeling tool for analyzing variances from model parameter extraction sequences, electrical test routines, and circuit test measurements

 • **Process Control/Analysis:**
 • Spayn performs statistical analyses on parametric data, and helps determine the complex relationships between circuit design and process fabrication parameters
What is Spayn? – Application Fields: Characterization

• Spayn identify the best set of parameters to provide the “golden device” and the nominal SPICE model
• Spayn generates accurate and realistic worst-case Corner models
• Spayn pilots SPICE simulations to evaluate best case and worst case circuit performances
What is Spayn? – Application Fields: Process Control & Analysis

- Spayn helps to identify the critical set of parameters to insure process statistical control
- Spayn defines relationship between process fluctuations and device models or circuit performance variations
- Spayn display parameters distributions on wafer map
What is Spayn? – Users

- Parameter Extraction and Circuit Simulator Support Personnel
- Device Modeling Engineers
- Circuit Designers
- Process Development/Integration Engineers
What is Spayn? – Environment

- Measurement Equipment
- Circuit Test
- Process/Device Simulation
- E-test
- Other sources of process and/or device data
- To Circuit Simulator

Pi = ai1*X1 + ai2*X2 + ... ai6*X6

“Worst-case” Parameters

Spayn Detailed Product Description
Presentation Outline

- What is Spayn?
- Data Management
 - Parameter Analysis
 - Core Parameters Identification
 - Process Control
 - Simulation interface
 - Conclusions
• Import UtmostIII automated measurements
 • Automated on wafer measurement including prober control
 • Flexible Die selection
 • Storage in a Spayn compatible Database of:
 • SPICE parameters & model card
 • Electrical tests results
 • Mismatch currents measurement
 • Wafer mapping attributes
• Accept data from the V.W.F including:
 • Athena Process parameters
 • Atlas device parameters
 • Electrical tests and Spice parameters extracted via Utmost from Atlas electrical simulations
• Database conversion utilities from others format:
 • CSV
 • Fixed Length
 • RS/1

• Spayn File manager
 • Automated file type recognition
 • File properties display
Data Management – Database Generation

- Single database source Split/Merge facilities
- Multi database source Append/Merge facilities
- Database generation from fundamental parameters statistics:
 - Means
 - Standard deviations
 - Correlations
- Filtering on:
 - Attributes Criteria's
 - Individual selection
 - Pattern recognition
 - Parameters search based on:
 - User’s defined limits
 - Automatic ‘out of range’ rules

- Search Summary:
 - Easy to identify sources of “out-of-range” data, using different sorting methods
 - Sort by overall frequency
 - Sort by reject frequency
 - Unsorted
Data Management – Visualization Tools

- Spreadsheet:
 - To view combined data from various sources
 - To create new attributes from relations between existing attributes or from external data
 - To create new parameters using elementary mathematical functions

- Statistical summary table:
 - Statistical property summary of each individual parameter
Data Management – Export

- Database export at any format
 - Automated parameters renaming
 - Include generated parameters
- Control file option (saves performed analysis)
• What is Spayn?
• Data management
• Parameter Analysis
 • Core Parameters Identification
 • Process Control
 • Simulation interface
• Conclusion
- Parameter Analysis – Distribution -

- Advanced Histograms plots
 - Positively and negatively skewed data
 - Automatic “best fit” option
 - Distributions fit equations:
 - Normal
 - Lognormal
 - Gamma
 - Exponential
 - Weibull
 - Cumulative probability display option
- Print capability (printer/file)
• Correlation table
• Highlighted strong correlations
• Scatter plots
 • Parameters relationships analysis using the least squares method
• Automated Fit
 • Linear, logarithmic, parabolic, reciprocal, hyperbolic, exponential, power, root, or 3rd order polynomial
• Generation of:
 • Resulting error residuals,
 • ANOVA information
• Correlation coefficients
• Any point of the scatter plot can be used to pilot a SPICE simulation
Parameter Analysis – Matching

• Distributions of
 • Parameter differences
 • Parameter ratios

• Matching quantities generation
 • Based on mathematical relation with existing parameter
 • Stored as normal parameters

• Includes user-specified confidence limits
 • Absolute differences
 • Relative differences
Parameter Analysis – Regression

- Regression analysis with:
 - Up to, and including, third order terms
 - Normalized or not predictors
 - Fit Error information
 - ANOVA information
 - Plot estimated
 - (Modeled) parameter values versus measured parameter values using scatterplot
 - TonyPlot can be used to visualize model response surface
Parameter Analysis – Wafer Mapping

- Displays parameters or any others data together with their distributions over die locations
- Wafer geometrical information are either
 - User’s defined
 - Automatically included if Utmost III was used
- Histogram accessible for each parameter/die
- Golden Device feature:
 - Calculate which observation(s) in a particular database most closely match the mean, based on dissimilarity measures
 - Highlight golden device observation in a scattergram
 - => Easy check of a regression model validity
• Data set definition and highlight
 • Histogram/Scattergram allows definition of data sets according to attributes values
 • Set of data are plotted using different color/markers
• Automated generation of Histogram and scattergram files
 • Many format supported, including printer file format or pictures (postscript, gif, pcx ...)
• Correlations between three parameters can be viewed a 3D scattegram
Presentation Outline

• What is Spayn?
• Data management
• Parameter Analysis
 • Core Parameters Identification
• Process Control
• Simulation interface
• Conclusion
• Goal of core parameters extraction is to provide the user with a limited set of parameters representative of the complete database fluctuations.

• Spayn provides two methods for core parameters extraction:
 • PCA (Principal Component Analysis)
 • PFA (Principal Factor Analysis)

• Those core parameters have the following properties:
 • Uncorrelated or weakly correlated between each others
 • Representative of process fluctuations

• Those properties made these set of parameters crucial for:
 • Statistical Process control and Yield analysis
 • Worst case model generation.
 • Design of Experimental Plan for simulations
Core Parameters Identification – Overview

Principal Factor Analysis (PFA) or Principal Component Analysis (PCA)

\[P_i = a_{i1}X_1 + a_{i2}X_2 + \ldots + a_{im}X_m \]

- \(n \) correlated device and/or process monitor and/or circuit parameters
- \(n \times n \) correlations of various magnitudes
- \(m \) (\(m << n \)) uncorrelated process-related factors. Can be used for isolating “core” process variables, relating device and circuit parameters to these “core” process variables, and for statistical circuit design techniques.
Core Parameters Identification – Setup

- Analysis:
 - Principal Factor Analysis (PFA)
 - Principal Component Analysis (PCA)
 - Normal
 - Weighted PCA analysis (Weights users defined or generated from sensitivity analysis)
 - VARIMAX and QUARTIMAX rotations
 - Extensive statistical information of PCA and PFA results
• Identification of dominant parameters and/or factors of variations:
 • Parameters are automatically grouped depending on their dominant factor of variation
 • Analysis of each parameter group then identifies relationships between variations of any kind of parameters
 • Subset of dominant parameter can be users defined or modified
• Model generated are based on:
 • Dominant factors or parameters or user’s defined subset
 • Equations can be fully configured:
 • Linear or not
 • Including interactions terms
 • Up to third degree
 • Parameter variance information’s automatically updated
Presentation Outline

• What is Spayn?
• Data management
• Parameter Analysis
• Core Parameters Identification
• Process Control
• Simulation Interface
• Conclusion
• Spayn can be used to determine the underlying statistical nature of IC manufacturing processes and their impact on device performance
• Spayn creates statistical process control (SPC) and process monitor (PM) charts to track the variation of dominant parameters or factors over selected wafers or lots
• SPC charts plot and store Shewhart mean and range/sigma data with the parameters grouped in terms of their attributes
• Spayn helps to identify an efficient process monitoring strategy by identifying the minimum set of dominant factors that must be monitored in production in order to control the yield
• Process monitoring charts are then used to view these parameters
- Monitor core parameters variations
- Custom group based on attributes selection
- Possibility to generate at full parameter set at any point of the PM chart
- Any point of the PM chart can be used to pilot SPICE simulation
Process Control – Statistical Process Control

- Check variations of any Parameters/Factors stay under statistical control
- Provides explicit warning when out of control
- Custom group based on attributes selection
Presentation Outline

- What is Spayn?
- Data management
- Parameter Analysis
- Core Parameters Identification
- Process Control
- Simulation Interface
- Conclusion
Simulation Interface – Architecture: External Simulation

• Simulation using External Spice simulator:
 • For any kind of SPICE simulations
 • Model Card defined in Spayn through a specific interface
 • Netlist including analysis
 • Fast SPICE simulator supported through SmartSpice-API
 • Asynchronous simulation interface
Simulation Interface – Model Definition

- Flexible and powerful model definition
 - A Spice label for model card use can be associated to any parameter
 - Constant SPICE parameters automatically added to all model cards
 - A same parameter can be used for several model
 - Clipping mode to check SPICE parameter validity including:
 - Automatic from statistical information
 - Automatic from empirical information
 - Users defined
• Use PCA/PFA models to generate realistic corner models
• Corners models taking parameters correlations into account
• Generation of SPICE model card corresponding to the corners
• Direct link to a spice simulator for automated corner models simulations
• Automated generation of SPICE input deck title for Identification purpose
Simulation Interface – D.O.E.

• Many different Design Of Experiment plan proposed
 • Based on Corners:
 • 2 level full and half factorial,
 • Box-behnken fractional factorial 3-level,
 • Circumscribed Central Composite,
 • Face Centered Cubic.
 • Monte Carlo,
 • Classical, Optimized (using SPICE simulator Monte Carlo features), or For Matching (includes additional Random terms to restore the original variance of the full database)
 • Sample stored in a new database.
 • Performance parameter measured and stored for each sample
 • Gradient Analysis
 • To Evaluate a performance parameter sensitivity to each core parameter
Simulation Interface – D.O.E.

Spayn
- Automatic model card generation

FAST SartSpice API
- Netlist completion
- Launch simulator
- Run Simulation

SmartView
- Simulations result Post-Processing
Presentation Outline

- What is Spayn?
- Data management
- Parameter Analysis
- Core Parameters Identification
- Process Control
- Simulation interface

• Conclusion
• Use Spayn because:
 • Little statistical background required
 • Easy SPICE simulations pilot
 • Up to date statistical methodology applied to semiconductor industry
 • Unique tool to make a vertical analysis of the full manufacturing process

• Use Spayn to:
 • Visualize Data/Correlations
 • Find Groups/Independent Factors/Independent Parameters
 • Perform Worst-Case Design/Monte Carlo Design
 • Investigate Device Current Characteristics
 • Perform Process Monitoring/Control